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Any logical procedure that is used to reason or to infer either deductively or
inductively, so as to draw conclusions or make decisions, can be called, in a
broad sense, a realization process. A realization process usually assumes the
recursive form that one state develops into another state by following a certain
specific rule. Such an action is generally formalized as a dynamical system.
In mathematics, especially for existence questions, a realization process often
appears in the form of an iterative procedure or a differential equation. For
years researchers have taken great effort to describe, analyse, and modify
realization processes for various applications.

The thrust in this exposition is to exploit the notion of dynamical systems
as a special realization process for problems arising from the field of linear
algebra. Several differential equations whose solutions evolve in submanifolds
of matrices are cast in fairly general frameworks, of which special cases have
been found to afford unified and fundamental insights into the structure and
behaviour of existing discrete methods and, now and then, suggest new and
improved numerical methods. In some cases, there are remarkable connections
between smooth flows and discrete numerical algorithms. In other cases, the
flow approach seems advantageous in tackling very difficult open problems.
Various aspects of the recent development and application in this direction
are discussed in this paper.
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1. Introduction

At the risk of oversimplifying an extremely complex mechanism of thinking,
we begin with a large and loose metaphor to delineate the characteristics
of a realization process. A realization process usually comprises three com-
ponents. First, we have two abstract problems, of which one is an artificial
problem whose solution is easy to find, while the other is the real problem
whose solution is hard to attain. Secondly, we need to design a bridge or
a path that connects the easy problem to the difficult problem. The basic
idea is to utilize the bridge to set the rule for a certain dynamical system
that evolves from the solution of the easy problem to the solution of the
difficult problem. Once the blueprint for the bridge construction is in place,
we finally need a practical method allowing us to move along the path so
that the desirable solution is reached at the end of the process.

The steps taken for the realization, that is, the changes from one state
to the next state along the bridge, can be discrete or continuous. Given
the limitations of current computing technology, however, it is generally ac-
cepted that the most common and effective way to execute a computation is
by means of floating-point arithmetic (Goldberg 1991). As such, it is almost
a mandate that a continuous realization process must be discretized first be-
fore it can be put into operation numerically (Allgower and Georg 2003).
For this reason, and perhaps more so for convenience, we have observed
that a majority of numerical algorithms in practice are iterative in nature.
It could very well be the case that an iterative scheme was initially devised
without the notion of a ‘connecting bridge’ in mind. Its convergence and
hence the appearance of a bridge connecting the starting point to the limit
point are often not immediately evident, but are rather the result of hard
analysis. In hindsight, we now recognize that most iterative methods can
be categorically classified as realization processes.

Our principal goal in this exposition is to characterize the relationship
between the dynamics of classical iterative methods and that of certain
differential systems. We note that in certain cases the continuous model
‘interpolates’ exactly the iterates of the corresponding discrete method, or
that the discrete model ‘samples’ the solution flow of the corresponding dif-
ferential equation at integer times, while in other case we can only suggest
a straightforward continuous extension or an obvious discretization. In all
cases, we think that the interplay between dynamical systems and compu-
tational methods is not only of theoretical interest but also has important
consequences, as will be made manifest in the subsequent discussion.

Needless to say, the success of a realization process depends on how the
bridge is extended from the trivial solution to the desirable solution. Some-
times we have specific guidelines in building the bridge. Bridges underlying
the projected gradient method (Chu and Driessel 1990), the interior point
method (Karmarkar 1984, Wright 1997, Potra and Wright 2000, Wright
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Figure 1.1. Possible links between continuous
and discrete dynamical systems.

2005) or the conjugate gradient method (Hestenes and Stiefel 1952, Green-
baum 1997, Meurant 2006), for example, are based on the principle of sys-
tematically optimizing the values of certain objective functions. Sometimes
the bridge is developed more or less on the basis of ‘innate inclination’,
where we can only hope that the bridge will connect to the other end.
The continuous Newton method (Smale 1977), or the homotopy method
(Allgower and Georg 1980, Garćıa and Gould 1980, Morgan 1987), for ex-
ample, requires extra efforts to make sure that the bridge actually makes
the desirable connection. In other situations, such as for the QR algorithm
(Francis 1961/1962, Watkins 1982) or the Rayleigh quotient iteration (Par-
lett 1974), it appears that the bridge comes into existence in an anomalous
way. But the fact is that a much deeper mathematical or physical cause is
often involved. When the theory is unveiled, we are often amazed to see
that these seemingly aberrant bridges do exist by themselves naturally.

Figure 1.1 serves as a reminder of the possible links between continuous
and discrete dynamical systems. The dotted lines indicate that an iterative
scheme might be generated or regenerated from a differential system. Going
from a continuous system to a discrete system is usually regarded as ‘natural’
since most numerical ODE techniques are doing precisely that task, but
one major thrust of this paper is to illustrate some non-traditional ways of
discretization that are not as straightforward as an ordinary ODE scheme,
but could lead to new and effective algorithms. On the other hand, going
from an iterative scheme to a differential system is not always as obvious
as merely considering the discrete scheme as an Euler step of a differential
system. Other mechanisms, such as control, acceleration, optimization, or
structure preservation, can also induce continuous dynamical systems. Our
presentation in this paper centres around describing, case by case, each
direction in the flowchart of Figure 1.1, with applications arising from linear
algebra algorithms.
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2. Numerical analysis versus dynamical systems

Most of the iterative methods developed for practical purposes assume the
format of an m-step sequential process (Ortega and Rheinboldt 2000),

xk+1 = Gk(xk, . . . ,xk−m+1), k = 0, 1, . . . , (2.1)

where

Gk : Dk ⊂ V m → V (2.2)

are some predetermined maps, V is a designated vector space and m is
a fixed integer. Obviously, to start up an m-step iteration, initial values
x0,x−1, . . . ,x−m+1 must be specified first. An m-step process is said to
be stationary if all iteration maps Gk together with the domains Dk are
independent of k.

Conventional numerical integrators such as the Runge–Kutta methods
and the Adams methods for an initial value problem,

dx

dt
= f(t,x), x(0) = x0, (2.3)

are typical one-step and multi-step sequential processes, respectively. The
corresponding iterative maps Gk have evident definitions for explicit meth-
ods, but their construction is more devious for implicit methods. Discussions
on issues of stability and convergence for discrete methods in this context are
abundant in the literature. We shall not review any numerical ODE tech-
niques in this paper, but would recommend the seminal books by Hairer,
Nørsett and Wanner (1993) and Hairer and Wanner (1996) as general ref-
erences on this subject. Our focus in this paper is concentrated primarily
on a few very specific iterative processes that were developed originally for
problems from fields other than ODEs. It will become apparent that the
differential systems associated with the applications to be discussed are of
a distinct character and that special numerical techniques might be needed.
It is perhaps fitting to echo what Gear (1981) has suggested: that there are
more things to do with ODE techniques.

It should be stressed that the subject of discrete dynamical systems has
its own distinguished role in nonlinear analysis, providing models for many
natural phenomena, and is itself a discipline of extensive and deep research
activity. For example, there is Sarkovskii’s theorem, remarkable for its
lack of hypotheses and for its qualitative universality, asserting that if the
discrete dynamical system formed by iterating a continuous function f :
R → R has a point of period 3, then it has points of all periods. This topic
is beyond the scope of our current discussion, but we find the introductory
textbooks by Devaney (1992) and Elaydi (2005), as well as the extended
article by Galor (2005), very accessible. The book by Kulenović and Merino
(2002) is interesting in that it contains ready-to-use software for computer
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simulation. For more rigorous theoretical development and a rich collection
of applications, we recommend the monograph by Sedaghat (2003). Of
course, the fundamental textbook by Wimp (1984) remains the absolute
reference for computational issues associated with finite difference equations.

2.1. Dynamics of iterative maps

A subtle line must be drawn in that the classical convergence analysis and
stability theory of numerical analysis consider only systems with trivial
asymptotic behaviour, namely convergence to a unique equilibrium point,
whereas most dynamical systems show more complicated behaviour, with
limit cycles or even strange attractors (Stuart and Humphries 1996). From a
numerical analysis point of view, the discretization of a differential equation
is primarily meant to trace the solution flow with reliable and reasonable
accuracy. From a dynamical systems perspective, however, the analysis of
a sequential process seeks to differentiate the intrinsic geometric structure.
There is considerable overlap between these two disciplines, but there are
also significant differences, as Guckenheimer (2002) explains:

‘The tension between geometric and more traditional analysis of numerical inte-
gration algorithms can be caricatured as the interchange between two limits. The
object of study is systems of ordinary differential equations and their flows. Numer-
ical solution of initial value problems for systems of ordinary differential equations
discretizes the equations in time and produces sequences of points that approximate
solutions over time intervals. Dynamical systems theory concentrates on questions
about long-time behavior of the solution trajectories, often investigating intricate
geometry in structures formed by the trajectories. The two limits of (1) discretiz-
ing the equations with finer and finer resolution in time and (2) letting time tend
to infinity do not commute. Classical theories of numerical analysis give little in-
formation about the limit behavior of numerical trajectories with increasing time.
Extending these theories to do so is feasible only by making the analysis specific to
classes of systems with restricted geometric properties. The blend of geometry and
numerical analysis that is taking place in current research has begun to produce a
subject with lots of detail and richness.’

Perhaps a simple example can best demonstrate the above points. Con-
sider the task of solving the logistic equation,

dx

dt
= x(1 − x), x(0) = x0, (2.4)

by the Euler method,

xk+1 = xk + ǫxk(1 − xk), (2.5)

with step size ǫ. The exact solution of (2.4) is given by

x(t) =
x0

x0 + e−t(1 − x0)
, (2.6)
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Figure 2.1. Euler iterations for the logistic equation.

which converges to the equilibrium x(∞) = 1 for any initial value x0 �= 0.
Traditional numerical analysis concerns and proves the convergence of xn to
x(t) at each fixed t in the sense that n → ∞ but t = nǫ. With n = ⌈90

ǫ ⌉ and
0 < ǫ ≤ 3, we plot the absolute error |xn −x(nǫ)| in the right-hand graph of
Figure 2.1. The graph for ǫ between approximately 0.5 and 1.5 is omitted
because of the logarithm at machine zero. Note that even at ridiculously
large step sizes the errors follow the theoretic estimate O(ǫ). On the other
hand, with each fixed ǫ, if we iterate the Euler steps 5000 times, then the
sequence {xk} exhibits period doubling when ǫ is larger than 2. The left-
hand graph in Figure 2.1 shows the limit points, as a function of ǫ, of the
corresponding sequence {xk}. The so-called Feigenbaum diagram clearly
indicates a cascade of period doubling as ǫ increases, which eventually leads
to numerical chaos. Note in particular that the equilibrium x(∞) = 1 for
(2.4) is no longer an attractor to the discrete dynamical system (2.5) when
ǫ is sufficiently large. This equilibrium of the original differential equation
does not even appear in the Feigenbaum diagram for large ǫ values. In
contrast, implicit schemes such as

xk+1 = xk + ǫxk(1 − xk+1) (2.7)

or

xk+1 = xk + ǫxk+1(1 − xk+1) (2.8)

converge to the equilibrium x(∞) = 1 for any step size ǫ.
With this lesson in mind, we must be careful in distinguishing between the

limiting behaviour of an iterative algorithm, which is designed originally by
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a numerical practitioner to solve a specific problem, and that of a discrete
approximation of a differential system, which is formulated to mimic an
existing iterative algorithm. Likewise, we must also distinguish the asymp-
totic behaviour of a differential system, which is developed originally from
a specific realization process, and that of its discrete approximation, which
becomes an iterative scheme.

2.2. Pseudo-transient continuation

It might be worthwhile to illustrate a general mechanism for advancing a
specific continuous system. This idea is not the only way to discretize a
continuous system and does not work for every kind of differential system,
but it illustrates an interesting view of how the trajectory of a continuous
system can be approximately tracked so as to find the equilibrium point, by
using numerical ODE techniques in a somewhat non-traditional way.

We shall see in Section 7.3 that it is often the case in many applications
that the solution x∗ is realized as the limit point

x∗ = lim
t→∞

x(t), (2.9)

where x(t) is the solution to the gradient flow

dx

dt
= −∇F (x), x(0) = x0, (2.10)

with respect to a specified smooth objective function F : R
n → R. At first

glance, we should be able to find x∗ by solving the first-order optimality
condition

∇F (x) = 0,

with some general-purpose Newton-like iterative methods. Such an ap-
proach, however, ignores the gradient property of ∇F and may locate a so-
lution which is different from x∗, and might even be dynamically unstable.
Employing some existing ODE integrators to carefully trace the trajectory
x(t) is another way of finding x∗. As reliable as this approach might be, it
requires expensive computation at the transient states which is not needed
for computing x∗.

One feasible discretization of (2.10) is as follows. Assuming that an ap-
proximate solution xk has already been computed, one implicit Euler step
with step size ǫk to (2.10) yields a nonlinear equation,

xk+1 = xk − ǫk∇F (xk+1), (2.11)

for the next step xk+1. Instead of solving (2.11) to high precision as an
ODE integrator would normally do, we perform the correction using only
one Newton iteration starting at xk and accept the outcome as xk+1. The
idea is to stay near the true trajectory, but not to strive for accuracy. It is
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not difficult to see that one Newton step for (2.11) leads to the iterative
scheme

xk+1 = xk −

(
1

ǫk
In + ∇2F (xk)

)−1

∇F (xk). (2.12)

This scheme is a special implicit upwind method which has been applied
successfully for computing steady-state solutions in the PDE community
(Mulder and van Leer 1985). Note that for small values of ǫk the scheme
(2.12) behaves like a steepest descent method, whereas for large values of ǫk

it behaves like a Newton iteration. Taking into account the fact that ∇F (x)
should have small norm near the optimal point x∗, the so-called ‘switched
evolution relaxation’ strategy for selecting the step sizes, namely,

ǫk+1 = ǫk
‖∇F (xk)‖

‖∇F (xk+1)‖
, (2.13)

seems to be able to capture the characteristics of being relatively large in the
initial phase, and small in the terminal phase of the iteration. The method
described above is referred to as pseudo-transient continuation in Kelley
and Keyes (1998), where convergence theory and implementation issues are
also discussed. For a review of its applications, see the recent paper by
Kelley, Liao, Qi, Chu, Reese and Winton (2007).

In the subsequent sections of this paper, we shall review various kinds of
numerical algorithms, especially those related to linear algebra problems,
and explore the possibility of recasting them as dynamical systems. Not
only do we want to establish the relationship for theoretical interest, but
we also wish to gain some insights via this interpretation, and to develop
some new algorithms. A few of these ideas have already been reported in
an earlier review by Chu (1988). It is hoped that this paper will bring up
to date some more recent developments advanced in the past two decades
and point out some new areas for research.

3. Dynamical systems for linear equations

Iterative methods for linear systems have a significant role in history and in
applications. This class of methods has come a long way with a dazzling ar-
ray of developments. See, for example, the various ‘templates’ discussed in
the book by Barrett et al. (1994). Research is still evolving even now. Cur-
rent techniques range from the ingenious acceleration of classical iterative
schemes (Hageman and Young 1981) to effective Krylov subspace approxi-
mation (van der Vorst 2003), to the more geometrically motivated multi-grid
(Briggs 1987, Bramble 1993) or domain decomposition approaches (Toselli
and Widlund 2005). Some favourites of practitioners include the precondi-
tioned conjugate gradient (PCG) method (Hestenes and Stiefel 1952), the
generalized minimum residual (GMRES) method (Saad and Schultz 1986),
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the quasi-minimal residual (QMR) method (Freund and Nachtigal 1991),
and so on. It is impossible to discuss the dynamics of these methods one
by one in this presentation. We outline briefly only two principal ideas in
this section.

3.1. Stationary iteration

Most classical iterative methods, such as the Jacobi, the Gauss–Seidel, or
the SOR methods, for the linear system

Ax = b, (3.1)

where A ∈ R
n×n is non-singular and b ∈ R

n, are one-step stationary se-
quential processes of the form

xk+1 = Gxk + c, k = 0, 1, 2, . . . . (3.2)

The iteration matrix G ∈ R
n×n plays a crucial role in the convergence

of {xk} in this scheme. Indeed, a necessary and sufficient condition for
the convergence of (3.2) from any given starting value x0 to the unique
solution x∗ of (3.1) is that the spectral radius ρ(G) is strictly less than one
(Varga 2000). Extensive efforts have been made to construct G to ensure
convergence. This is usually done as follows. At the fixed point x∗, we see
the relationship

G = I − K−1A, (3.3)

c = K−1b,

for some non-singular matrix K. Because A is ‘split’ by K in the sense that

A = K − KG,

K is called a splitting matrix of A. Thus, in designing an effective iterative
method, attention turns to the selection of a splitting matrix K of A, such
that ρ(I − K−1A) < 1, for which K−1 is relatively easy to compute. The
mathematical theory developed for this traditional approach can be found
in the seminal book by Varga (2000).

It is trivially seen that the iterative scheme (3.2) is equivalent to an Euler
step with unit step size applied to the differential system

dx

dt
= f(x; K) := −K−1(Ax − b), (3.4)

whose analytic solution is given by

x(t) = e−K−1At(x0 − A−1b) + A−1b. (3.5)

For convergence, however, there is a fundamental difference between the
difference equation (3.2) and the differential equation (3.4) in the condition
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to be imposed on the splitting matrix K. The concern in (3.2) is to make
ρ(I − K−1A) as small as possible. Indeed, an ideal K would be one for
which the eigenvalues of K−1A are clustered around the real value λ = 1.
Of course, the obvious choice K = A is not practical, because computing
A−1 is precisely the task we want to circumvent by doing iteration. In
contrast, the concern in (3.4) is to make the real part of eigenvalues of
K−1A positive and large for fast convergence to the limit point x∗. It
might also be desirable to keep the eigenvalues of K−1A clustered to avoid
stiffness or high oscillation.

All of these requirements imposed on eigenvalues of K−1A in either case
can be met by employing techniques for multiplicative inverse eigenvalue
problems, which are discussed in the book by Chu and Golub (2005). For
specific applications, finding the most suitable preconditioner has been a
major research effort, since it can significantly improve the efficiency of an
iterative method. In practice, however, preconditioning is an inexact science
because different preconditioners work better for different kinds of problems.
To stay within the theme of this article, we shall not elaborate on the choice
of K, but assume that it has been constructed in some fashion.

The question now is how to integrate (3.4) so as to reach its equilibrium
point quickly. Certainly there are various ways to discretize the differential
system (3.4), including the pseudo-transient continuation method described
earlier. There are also many different choices of the splitting matrix K,
including an obvious choice K−1 = A⊤ which leads to a gradient flow

dx

dt
= −A⊤(Ax − b), (3.6)

for the objective function f(x) = 1
2‖Ax− b‖2

2, which works even when A is
a rectangular matrix. Once a decision is made, what is the dynamics of the
resulting iterative map?

We shall describe in the next section how the discretization of (3.4) can be
related to the Krylov subspace method. At present, it might be appropriate
to recall two scenarios already described in (Chu 1988) that demonstrate
the ‘tension’ referred to by Guckenheimer (2002) between geometric and
more traditional analysis of numerical integration algorithms.

First, suppose that the trapezoidal rule with step size ǫ is applied to (3.4).
We obtain an iterative scheme,

xk+1 =

(
I+

ǫ

2
K−1A

)−1(
I−

ǫ

2
K−1A

)
xk +ǫ

(
I+

ǫ

2
K−1A

)−1

K−1b, (3.7)

which makes an interesting comparison with the analytic solution,

x(t + ǫ) = e−ǫK−1Ax(t) +

∫ t+ǫ

t
e(t+ǫ−u)A(K−1b) du. (3.8)
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Specifically, the iteration matrix
(
I + ǫ

2K−1A
)−1(

I − ǫ
2K−1A

)
, being the

(1, 1)-pair Padé approximation, agrees with the exponential matrix e−ǫK−1A

up to the ǫ2 term in the series expansion. Likewise, the second term in (3.7)
agrees with the integral in (3.8) to the same order of accuracy. Though
it might not be practical for real computation, the iterative scheme (3.7),
using the trapezoidal rule, on one hand tracks the solution curve closely for
small ǫ, and on the other hand converges to x∗ for any step size ǫ.

Secondly, recall that the well-known polynomial acceleration methods ap-
plied to (3.2) usually assume a three-term recursive relationship,

x1 = ǫ1(Gx0 + c) + (1 − ǫ1)x0,

xk+1 = αk+1

[
ǫk+1(Gxk + c) + (1 − ǫk+1)xk

]
+ (1 − αk+1)xk−1, (3.9)

with some properly defined real numbers αk and ǫk (Hageman and Young
1981, Chapters 4–6). Note that the scheme (3.9) amounts to a two-step
sequential process. It is not difficult to rewrite the recursive relationship as

x1 = x0 + ǫ1f0,

xk+1 = αk+1xk + (1 − αk+1)xk−1 + ǫk+1αk+1fk, (3.10)

with fk := f(xk; K), which is the vector field in (3.4). This identifica-
tion offers an interesting interpretation, that is, the polynomial acceleration
procedure (3.9) can be regarded as the application of a sequence of explicit
two-step methods (3.10) to the differential system (3.4) with step size ǫk+1.
Beware, however, of the subtle distinction that the two-step method (3.10)
has a low order of accuracy (of order one, indeed) if regarded as an ODE
method, but has a faster rate of convergence (with appropriately selected
step size ǫk) to the equilibrium x∗ if regarded as an iterative scheme.

3.2. Krylov subspace methods

We have seen how a basic iterative system (3.2) motivates the continuous
system (3.4), which we now rewrite as

dx

dt
= K−1r, (3.11)

with r := b − Ax denoting the residual vector. Instead of considering the
iterative scheme,

xk+1 = xk + ǫkK
−1rk, (3.12)

as one Euler step with variable step size ǫk, we interpret (3.12) as a line
search in the K−1rk direction for a given K−1. In this context, we can even
put aside the concern of requiring eigenvalues of K−1A to reside in the right
half of the complex plane. If the search is intended to minimize the size of
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the residual vector, say, r⊤k+1rk+1, then the optimal step size is given by

ǫk =
〈AK−1rk, rk〉

〈AK−1rk, AK−1rk〉
, (3.13)

where 〈u,v〉 := u⊤v stands for the inner product. If A is symmetric and
positive definite and rk+1A

−1rk+1 is to be minimized, then the optimal step
size is given by

ǫk =
〈K−1rk, rk〉

〈AK−1rk, K−1rk〉
. (3.14)

In the special case K = I, the two step size selection strategies (3.13)
and (3.14) correspond precisely to the ORTHOMIN(1) and steepest descent
methods (Greenbaum 1997), respectively.

We can also adopt a two-step sequential process similar to the accelerator
(3.10), except that conventionally we prefer to write the scheme as

xk+1 = xk + ǫk

[
K−1rk + γk(xk − xk−1)

]
, (3.15)

with step size ǫk. Such a scheme, if regarded as an ODE method for the
differential system (3.11), would have low order of accuracy. However, by
defining p0 = K−1r0 and

pk := K−1rk + γk(xk − xk−1) = K−1rk + βkpk−1, (3.16)

with βk := ǫk−1γk, we see an interesting non-stationary iteration embedded
in (3.15), that is,

xk+1 = xk + ǫkpk,

rk+1 = rk − ǫkApk,

which has profound consequences. In particular, under the assumption that
A is symmetric and positive definite and K is symmetric, it can be verified
that the iterative scheme (3.15) with the specially selected scalars

ǫk =
〈pk, rk〉

〈Apk,pk〉
, (3.17)

βk+1 = −
〈K−1rk+1, Apk〉

〈Apk,pk〉
, k = 0, 1, . . . , (3.18)

corresponds precisely to the well-known preconditioned conjugate gradient
method with K−1 as the preconditioner (Greenbaum 1997). Among the
many nice properties of the conjugate gradient method, the most signif-
icant one is that the sequence {xk} converges in exact arithmetic to the
equilibrium point x∗ in at most n iterations. Such a phenomenon of reach-
ing convergence in only a finite number of steps (by a somewhat laughably
inaccurate method as far as solving (3.11) is concerned) is perhaps unex-
pected from a numerical ODE point of view.
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There is a variety of different formulations of the Krylov subspace meth-
ods (van der Vorst 2003). We remark that quite a few of them can be
derived in a similar spirit, but space limitation prohibits us from giving the
details here. Referring to the diagram in Figure 1.1, the lesson we have
learned is that from a very basic discrete dynamical system such as (3.2)
we can arrive at a very general continuous dynamical system such as (3.4).
Instead of tracing the continuous dynamics by some very refined numerical
ODE methods, we could use the system as a guide to draw up some general
procedures such as (3.10) or (3.15). These discrete procedures roughly solve
the continuous system, but not with great accuracy. However, upon aptly
tuning the parameters which masquerade as the step sizes in the proce-
dures, we can often achieve fast convergence to the equilibrium point of the
continuous system, eventually accomplishing the goal of the original basic
discrete dynamical system.

4. Control systems for nonlinear equations

The dynamical system (3.11) for linear equations Ax = b, where K is
interpreted as a splitting matrix or a preconditioner of A, is merely a special
case of a much more general setting. The following approach sets forth a
framework from which many new algorithms can be derived.

The notion that many important numerical algorithms can be interpreted
via systems and control theory has long been in the minds of researchers.
In the seminal book by Tsypkin (1971) and the follow-up volume (Tsypkin
1973), for example, it was advocated that the gradient dynamical systems
‘cover many iterative formulas of numerical analysis’. Following the ideas
suggested by Bhaya and Kaszkurewicz (2006), we cast the various numerical
techniques for finding zero(s) of a given differentiable function

g : R
n → R

n

in an input–output control framework with different control strategies. Our
point is, again, a comparison of similarities between continuous and discrete
dynamical systems.

4.1. Continuous control

Consider the basic model

dx(t)

dt
= u(t), (4.1)

y(t) = −r(t),

where the state variable x(t) is controlled by u(t) while the output variable
y(t) is observed from the residue function

r(t) = −g(x(t)).
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Table 4.1. Control strategies and the associated dynamical systems.

φ(x, r) dV
dt

dx
dt

g′(x)−1r −‖r‖2
2 −g′(x)−1g(x)

g′(x)⊤r −‖g′(x)⊤r‖2
2 −g′(x)⊤g(x)

g′(x)−1sgn(r) −‖r‖1 −g′(x)−1sgn(g(x))

sgn(g′(x)⊤r) −‖g′(x)⊤r‖1 −sgn(g′(x)⊤g(r))

g′(x)⊤sgn(r) −‖g′(x)⊤sgn(r)‖2
2 −g′(x)⊤sgn(g(x))

One obvious approach is to employ both the state and the output as a
feedback to estimate the control strategy, that is,

u = φ(x, r), (4.2)

based on some properly selected φ. Different choices of φ can be used to
design the control and, hence, lead to various algorithms. Of course, it is
often that case that the choice of the control strategy φ depends on what cost
function V (x(t),u(t)) is to be optimized. In turn, the cost function often
plays the role as a Lyapunov function for the dynamical system. Table 4.1
summarizes just a few possible choices for the control u and the derivatives
of the associated cost functions (Bhaya and Kaszkurewicz 2006). Notably,
the first case in the table is the well-known continuous Newton method
(Hirsch and Smale 1979, Smale 1977).

It is not difficult to verify that the cost functions are V (t) = 1
2‖r(t)‖

2
2

in the first four cases and V (t) = ‖r(t)‖1 in the last case, respectively. Be
aware of the fact that the vector fields for x(t) are only piecewise continuous
in the last three cases. A discretization of the differential system may not
be trivial, which we will draw a distinct line from the discrete control in the
next section. trivial, which we will make a clear distinction from the discrete
control in the next section. Regardless of the possible non-smoothness in
the trajectory x(t), it is evident that the choice of the control u(t) always
causes the cost function V (t) to decrease in t and, if g′(x(t)) is always
non-singular, the residual function r(t) converges to zero.

4.2. Discrete control

An Euler analogue of (4.1) is the discrete input-output control system,

xk+1 = xk + uk, (4.3)
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where the control uk follows the feedback law,

uk = ǫkφ(xk, rk), (4.4)

with rk = −g(xk). To estimate the step size ǫk, observe the informal Taylor
series expansion,

rk+1 ≈ rk − ǫkg
′(xk)φ(xk, rk). (4.5)

The step size that best reduce the Euclidean norm of the vector on the right
side of (4.5) is given by the expression,

ǫk =
〈g′(xk)φ(xk, rk), rk〉

〈g′(xk)φ(xk, rk),g′(xk)φ(xk, rk)〉
. (4.6)

We have already seen a special case of (4.6) in (3.13) when the equation
g(x) = Ax− b is linear and the control φ(x, r) = K−1r is employed, which
is the ORTHOMIN(1) method. Another special case corresponding to the
choice of control φ(x,r) = g′(x)−1r leads to ǫk = 1, which of course is
the classical Newton iteration. Interestingly enough, the various choices of
φ(x, r) described in Table 4.1 together with the associated ǫk defined in (4.6)
set forth different zero-finding iterative schemes, some of which are perhaps
new. We do not think that all convergence properties of these schemes have
been well understood.

Be aware that the approximation in (4.5) is not necessarily true in general.
The increment uk from xk to xk+1, for instance, may not be small enough to
warrant the expansion of g(xk+1) at xk: the approximation is in jeopardy.
The step size ǫk defined in (4.6) therefore does not necessarily decrease the
magnitude of the residual function r(x). This is precisely the dividing line
between a discrete dynamical system which often converges only locally and
the continuous dynamical system which converges globally. The well-known
convergence behaviour of the classical Newton iteration and the continuous
Newton algorithm serves well to exemplify our points: the classical Newton
iteration with ǫk = 1 does not necessarily give rise to a descent step for the
residual function r(x), whereas the continuous Newton flow always does.
The relationship between the convergence rates of iterative and continous
processes has recently been studied in Hauser and Nedić (2007).

It is certainly possible to adopt models more sophisticated than (4.1) or
(4.3). For example, the two-step scheme

xk+1 = xk + ǫk

[
φ(xk, rk) + γk(xk − xk−1)

]
(4.7)

is analogous to (3.15) and can be converted into a nonlinear conjugate gra-
dient method (Daniel 1967, Savinov 1983, Yabe and Takano 2004). We shall
not elaborate on zero-finding algorithms here, but we hope the above dis-
cussion has shed some light on how a realization process, either continuous
or discrete, can be developed either from or for a dynamical system in the
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way suggested in Figure 1.1. There seems to be a rich interpretation of
the analogy between a discrete scheme and its continuous counterpart. It
would be interesting to see whether further consideration along these lines,
such as higher-order or multiple-step processes, can develop into new nu-
merical algorithms. Indeed, such a notion has been known as ‘higher-order
controllers’ for given plants in the community of control systems. Some of
the theory developed in that discipline might be useful in this regard, and
vice versa (Bhaya and Kaszkurewicz 2006).

5. Lax dynamical systems and isospectrality

One classical problem of fundamental importance in many critical applica-
tions is to find the spectral decomposition,

A0 = U0Λ0U
⊤
0 , (5.1)

of a given real-valued symmetric matrix A0. In the factorization, U0 is an
orthogonal matrix composed of eigenvectors of A0 and Λ is the diagonal
matrix of the corresponding eigenvalues. Currently, one of the most effec-
tive techniques for eigenvalue computation is by an iterative process called
the QR algorithm (Golub and Van Loan 1996). The algorithm performs
well due to the cooperation of several ingenious components, one of which
is the employment of suitable shift strategies that greatly improve the con-
vergence behaviour. Viewing the shifts as feedback control variables, some
studies have been made by Helmke and Wirth (2000, 2001) to analyse the
controllability of the inverse power method. As far as we know, however,
modelling the shift strategies used in a practical QR algorithm by a dynam-
ical system is still an open question. For simplicity, we demonstrate only
the basic QR algorithm with no shift.

Recall the fact that any matrix A enjoys the QR decomposition

A = QR,

where Q is orthogonal and R is upper triangular. The basic QR scheme
defines a sequence of matrices {Ak} via the recursion (Francis 1961/1962)

{
Ak = QkRk,

Ak+1 = RkQk.
(5.2)

The iteration implies that

Ak+1 = QT
k AkQk, (5.3)

showing not only the isospectrality of Ak to A0, but also the mechanism
of orthogonal congruence transformations applied to A0. It can be proved
that the sequence {Ak} converges to a diagonal matrix and, hence, the
decomposition (5.1) is realized through the iterative scheme (5.2). One is
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immediately curious why the swapping of Qk and Rk works in (5.2). In-
deed, there is a much deeper theory involved. Referring to the diagram
in Figure 1.1, we now identify a differential system to which the QR algo-
rithm corresponds, not as a discrete approximation but rather as a time-1
sampling.

5.1. Isospectral flow

Consider the initial value problem,

dX(t)

dt
:= [X(t), k1(X(t))], X(0) := X0, (5.4)

where k1 : R
n×n → R

n×n is some selected matrix-valued function to be
specified later, and

[A, B] := AB − BA (5.5)

denotes the Lie commutator (bracket) operation between matrices A and B.
We shall refer to (5.4) as a general Lax dynamical system with the Lax pair
(X, k1). Associated with (5.4), we define two parameter dynamical systems:

dg1(t)

dt
:= g1(t)k1(X(t)), g1(0) := I, (5.6)

and
dg2(t)

dt
:= k2(X(t))g2(t), g2(0) := I, (5.7)

with the property that

k1(X) + k2(X) = X. (5.8)

The following facts are useful but easy to prove, and have been established
in an early paper by Chu and Norris (1988).

Theorem 5.1. For any t within the interval of existence, the solutions
X(t), g1(t), and g2(t) of the systems (5.4), (5.6), and (5.7), respectively, are
related to each other by the following three properties.

(1) Similarity property:

X(t) = g1(t)
−1X0g1(t) = g2(t)X0g2(t)

−1. (5.9)

(2) Decomposition property:

exp(tX0) = g1(t)g2(t). (5.10)

(3) Reversal property:

exp(tX(t)) = g2(t)g1(t). (5.11)
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The implication of Theorem 5.1 is quite remarkable. First, it shows that
eigenvalues are invariant. For this reason, X(t) is called an isospectral flow.
Secondly, let the product g1(t)g2(t) in (5.10) be called the abstract g1g2

decomposition of exp(tX0) because at present we do not know the individual
structure, if there is any, of the parameter matrices g1(t) or g2(t). By setting
t = 1 in both (5.10) and (5.11), we see the relationship

{
exp(X(0)) = g1(1)g2(1),

exp(X(1)) = g2(1)g1(1).
(5.12)

Since the dynamical system for X(t) is autonomous, it follows that the
phenomenon characterized by (5.12) will occur at every integer time within
the interval of existence for these initial value problems. Corresponding to
the abstract g1g2 decomposition, the above iterative process (5.12) for all
feasible integers will be called the abstract g1g2 algorithm. It is thus seen
that the curious iteration in the QR algorithm is completely generalized
and abstracted via the mere splitting (5.8) of the identity map. Choosing a
different splitting leads to a different algorithm.

In particular, let any given matrix X be decomposed as

X = Xo + X− + X+,

where Xo, X−, and X+ denote the diagonal, the strictly lower triangular,
and the strictly upper triangular parts of X, respectively. Define

k1(X) = Π0(X) := X− − X−⊤
. (5.13)

The resulting Lax dynamical system,

dX(t)

dt
= [X(t), Π0(X(t))], X(0) = X0, (5.14)

is known as the Toda lattice (though initially the lattice is referred to only
in the case when X0 is symmetric and tridiagonal). It is important to note
that the matrix k1(X(t)) in the Toda lattice is skew-symmetric and thus
g1(X(t)) is orthogonal for all t. Furthermore, k2(X(t)) is upper triangular
and thus so is g2(X(t)). In other words, the abstract g1g2 decomposition
of exp(X) is precisely the QR decomposition of exp(X). It follows that
the sequence {X(k)} by sampling the solution of the Toda flow (5.14) at
integer times gives rise to exactly the same iterates as the QR algorithm
(5.2) applied to the matrix A0 = exp(X0).

The connection between the QR algorithm and the Toda lattice was first
discovered by Symes (1981/82) when studying the asymptotic behaviour of
momenta of particles in a non-periodic Toda lattice. The same relationship
was found later to be also closely related to the quotient-difference algorithm
developed much earlier by Rutishauser (1954).
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In contrast to the association between a discrete system and a continuous
system described earlier in Sections 3 and 4, which perhaps can be best
characterized as ‘mimicry’, the correspondence between the QR algorithm
and the Toda lattice exhibits a new type of involvement, namely, the re-
sult of an iterative scheme is entirely ‘embedded’ in the solution curve of a
continuous dynamical system or, equivalently, the solution curve of a dif-
ferential equation smoothly ‘interpolates’ all points generated by a discrete
dynamical system. Because of this close relationship, the evolution of X(t),
which starts from a symmetric initial value X0 and converges isospectrally
to a limit point which is a diagonal matrix, can almost be expected with-
out the need for any extra inculcation in the classical theory of the QR
algorithm, and vice versa (Deift, Nanda and Tomei 1983).

It is important to point out that, strictly speaking, the QR algorithm
applied to a non-symmetric matrix A0 with complex eigenvalues does not
converge to any fixed limit point at all in the conventional mathematical
sense. The iterates from the QR algorithm only pseudo-converge to a block
upper triangular form with at most 1×1 or 2×2 blocks along the main diag-
onal. Such a structure is a necessity when dealing with complex-conjugate
eigenvalues of a real-valued matrix by real arithmetic. For later reference,
we shall refer to any matrix with this kind of structure as an upper quasi-
triangular matrix. We stress again that the QR algorithm (and many other
algorithms) produces only this ‘form’, but not any fixed matrix, in its lim-
iting behaviour.

Likewise, the Toda flow applied to a non-symmetric matrix X0 does not
have any asymptotically stable equilibrium point in general. Rather, the
flow converges to an upper quasi-triangular form where each of the 2 × 2
blocks actually represents an ω-limit cycle. Now that we know the Toda flow
interpolates the iterates of the QR algorithm, the limit cycle behaviour of
the Toda flow offers a nice theoretical explanation of the pseudo-convergence
behaviour of the QR algorithm. Without causing ambiguity, we shall hence-
forth refer to such limiting behaviour as ‘convergence to an upper quasi-
triangular matrix’.

5.2. Complete integrability

The Lax dynamical system (5.4) actually arises in a much broader area
of applications. Consider the one-dimensional Korteweg–de Vries (KdV)
equation,

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3
= 0, (5.15)

for u = u(x, t). It is a classical result that the KdV equation is completely
integrable in the sense there are infinitely many conserved quantities or
constants of motion. Lax (1968) proved that the KdV equation is precisely
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the compatibility condition

dL

dt
= [B, L], (5.16)

for the pair of differential operators

Lψ :=
∂2ψ

∂x2
+ uψ, (5.17)

Bψ := −4
∂3ψ

∂x3
− 6u

∂ψ

∂x
− 3

∂u

∂x
ψ. (5.18)

In other words, by recognizing the fact that
[

∂

∂x
, x

]
ψ =

∂(xψ)

∂x
− x

∂ψ

∂x
= ψ

as the identity of differential operator,
[

∂

∂x
, x

]
= id,

the equation (5.16) holds if and only if u satisfies (5.15). The eigenvalues
λ ∈ R of the one-dimensional Schrödinger equation,

Lψ = λψ, (5.19)

∂ψ

∂t
= Bψ, (5.20)

for the wave function ψ = ψ(x, t; λ) with u(x, t) as the potential constitute
precisely the integrals of the KdV equation. The second equation, (5.20),
characterizes how the wave function evolves in time. The pair of operators
(L, B) is referred to as a Lax pair.

Under the assumption that λ is invariant over t, note that the two equa-
tions (5.19) and (5.20) are sufficient to imply the compatibility condition
(5.16) when acting on the eigenfunction ψ of the operator L. This is true
regardless of how the operators L and B are defined. In terms of the no-
tation adopted in our preceding section, we may interpret the Lax pair as
(X, k2(X)), where

dX

dt
= [k2(X), X], (5.21)

dψ

dt
= k2(X)ψ, (5.22)

and ψ(t) tells us how the eigenvector corresponding to the invariant eigen-
value λ varies in time.

We have seen that sampling the solution flow X(t) at integer times gives
rise to an iterative scheme, such as the QR algorithm. The question now is
whether an effective discretization can be derived to handle the integration
of equation (5.21) directly.
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It has to be pointed out that a central theme in the game of engaging
dynamical systems such as (5.21) is to maintain isospectrality. Nonetheless,
Calvo, Iserles and Zanna (1997) proved that most of the conventional nu-
merical ODE methods, in particular the multi-step and the Runge–Kutta
schemes, simply cannot preserve isospectral flows. One remedy is to per-
form numerical integration over one of the parameter dynamical systems
(5.6) or (5.7) and then employ the similarity property (5.9) to reclaim X(t).
Solving the parameter dynamical system still requires the preservation of
some structures, but can be handled more easily. In the case of (5.14),
for example, the flow g1(X(t)) of orthogonal matrices can be tracked by
orthogonal integrators developed by Dieci, Russell and Van Vleck (1994).
Approaches such as this follow the paradigm of discretization from the nu-
merical analysis perspective. We want to emphasize that there is more
beyond this traditional way of thinking. The Toda lattice itself has more
structure, so that a completely different perspective of discretization could
be, and should be, taken into account.

Two separate but related approaches that suggest integrable discretiza-
tion of the Toda lattice (for symmetric and tridiagonal matrices) are outlined
in Sections 5.3 and 5.4. We shall present the theory in these two sections,
but refrain from discussing the actual implementation, since eigenvalue com-
putation is a well-developed subject. Even so, the facts we are about to
introduce, namely, that the solution to the Toda lattice and, hence, the
iterates generated by the QR algorithm can be represented in ‘closed form’,
strongly suggest that an appropriate discretization can make the compu-
tation very effective. In Section 6, we will have a chance to exploit these
ideas further, and describe in detail an integrable discretization for the more
complicated singular value decomposition.

5.3. Orthogonal polynomials, moments and measure deformation

The first approach makes an interesting connection between orthogonal
polynomials and the solution of (5.14) when X0 is tridiagonal, which sheds
light on the notion of integrable discretization. In particular, we shall rep-
resent the solution to the Toda lattice in terms of moments associated with
a specific measure.

Recall that a set of orthogonal polynomials {pk(x)} defined by a positive
measure µ(x) over R, that is,

∫
pk(x)pℓ(x) dµ(x) = δk,ℓ, k, ℓ = 0, 1, . . . ,

always satisfies a three-term recurrence relationship,

xpk(x) = akpk+1(x) + bkpk(x) + ak−1pk−1(x), k = 1, 2, . . . , (5.23)

with p−1(x) ≡ 0 and p0(x) ≡ 1. This recurrence can be neatly written in a
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semi-infinite matrix form:



b0 a0 0
a0 b1 a1 0
0 a1 b2 a2 0

. . .
. . .

. . .
. . .

. . .




︸ ︷︷ ︸
J




p0(x)
p1(x)
p2(x)

...


 = x




p0(x)
p1(x)
p2(x)

...


. (5.24)

Indeed, there is a one-to-one correspondence between the measure µ and
the coefficient matrix J defined above (Akhiezer 1965, Aptekarev, Bran-
quinho and Marcellán 1997). This is closely related to the classical moment
problem. Let the moments corresponding to µ be denoted by

sj :=

∫
xj dµ(x), j = 0, 1, . . . . (5.25)

Define further the so-called Hankel determinants,

Hk := det




s0 s1 . . . sk−1

s1 s2 sk
...

...
sk−1 sk . . . s2k−2


. (5.26)

It is known that the monic orthogonal polynomials {p̃k(x)} associated with
{pk(x)} are given by (Akhiezer 1965, Szegő 1975)

p̃k(x) =
1

Hk
det




s0 s1 . . . sk

s1 s2 sk+1
...

...
sk−1 sk . . . s2k−1

1 x . . . xk




. (5.27)

If we write p̃k(x) as

p̃k(x) = xk + c
(k)
1 xk−1 + . . . + c

(k)
k−1x + c

(k)
k ,

then its coefficients are given by

c
(k)
j =

(−1)j

Hk
det




s0 . . . sk−j−1 sk−j+1 . . . sk

s1 sk+1
...

...
...

...
sk−1 . . . s2k−j−2 s2k−j . . . s2k−1


. (5.28)

Corresponding to (5.23), the recurrence relation for {p̃k(x)} becomes

xp̃k(x) = p̃k+1 + bkp̃k(x) + a2
k−1p̃k−1(x). (5.29)
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By comparing the corresponding coefficients, we conclude that

a2
k =

HkHk+2

H2
k+1

, (5.30)

bk = c
(k)
1 − c

(k+1)
1 . (5.31)

This is a classical result connecting the measure µ(x), the moments sj(x)
and the orthogonal polynomials pk(x).

Suppose now that the coefficients in J are time-dependent. Then the
corresponding measure µ is also time-dependent. Finding the relationship

J(t) ↔ µ(x; t)

allows us to write the coefficients of the orthogonal polynomials {pk(x; t)}
in terms of the corresponding moments sj(t). In general, this is a fairly
difficult task. Only very few cases are known to have exact solutions,
among which one is the J(t) associated with the Toda lattice (Aptekarev
et al. 1997).

The relationship is most conspicuous in the semi-infinite Toda lattice. By
identifying (the symmetric and tridiagonal matrix) X(t) with the tridiago-
nal matrix J in (5.24), the entries in the differential system (5.14) can be
expressed as the system

dak

dt
= ak(bk+1 − bk), (5.32)

dbk

dt
= 2(a2

k − a2
k−1), (5.33)

with a−1 ≡ 0. This differential system characterizes how X(t) or, equiva-
lently, the family of polynomials varies in time. We just need a measure that
can ensure the orthogonality of these polynomials. It turns out that the cor-
responding one-parameter deformation of the measure that can introduce
the desirable orthogonality has been shown by Moser (1975) to be

dµ(x; t) := etx dµ(x; 0). (5.34)

Equipped with this measure, we can easily calculate the solution to the
Toda lattice. That is, the entries ak(t) and bk(t) of X(t) can be calcu-
lated via (5.30) and (5.31), once the moments given by the integrals (5.25)
are computed. In fact, note that with this measure (5.34) we even enjoy
the recursion

dsℓ

dt
= sℓ+1, ℓ = 0, 1, . . . . (5.35)

Since these moments are computable in analytic form, we may say that the
solution to the Toda lattice (of symmetric and tridiagonal matrices) and
hence the iterates by the QR algorithm are now characterized in closed form.
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In this sense, we have obtained a discretization while maintaining complete
integrability.

It is informative to depict the relationship just described for the Toda
lattice as solid lines in Figure 5.1. We stress that the commuting diagram
composed of the top four boxes holds in general. That is, the coefficients
of the orthogonal polynomials corresponding to a given measure can be

µ(x) {p̃k(x)}

sj =
∫

xj dµ(x)

Hankel determinants

Toda

Lotka–Volterra

xp̃k = p̃k+1 + bkp̃k + a2
k−1p̃k−1

xp̃k = p̃k+1 + a2
k−1p̃k−1

(5.32) and (5.33)

(6.3)

dµ(x; t) = etx dµ(x)

dµ(x; t) = etx2

dµ(x)

measure

moments

orthogonal polynomial

three-term recurrence

three-term recurrence

measure deformation

measure deformation

time-dependent coeff.

time-dependent coeff.

SVD algorithm

QR algorithm

Figure 5.1. Integrable discretization of Toda lattice (solid line) and
Lotka–Volterra equation (dashed line) via Hankel determinants.
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expressed in terms of Hankel determinants of the corresponding moments.
For the Toda lattice where the coefficients {ak} and {bk} are governed by the
differential system (5.32) and (5.33), respectively, the commuting diagram
comprised of the left five boxes indicates how the inverse problem is solved.
An efficient calculation of the Hankel determinants is all we need for an
effective eigenvalue computation. This modus operandi is very different
from the orthogonal integrator approach mentioned earlier.

We mention in passing that a similar relationship also holds for the sin-
gular value decomposition. Specifically, there is a dynamical system whose
solution is related to the singular value decomposition (for bidiagonal ma-
trices) in the same way as the Toda lattice to the QR decomposition (for
symmetric and tridiagonal matrices). This dynamical system, known as the
Lotka–Volterra equation, will be defined in Section 6. In analogy to the
Toda lattice, the solution to the Lotka–Volterra equation can be expressed
in terms of moments and Hankel determinants associated with a special
measure,

dµ(x; t) = etx2

dµ(x). (5.36)

For completion and comparison, such a relationship depicted as dotted lines
is also included in Figure 5.1, but we shall omit the details here. Readers are
referred to the paper by Nakamura (2004) for an overview of this subject.
The book by Nakamura (2006) contains many more details and interesting
historical notes, but is written (for now) in Japanese.

In most linear algebra applications, we are perhaps more interested in
a finite-dimensional matrix. This can be done by truncating the infinite-
dimensional coefficient matrix J into an n × n matrix L. Then (5.24) is
reduced to the equation




b0 a0 0

a0 b1 a1 0

0 a1 b2 a2 0

. . .
. . .

. . .

an−2

0 an−2 bn−1




︸ ︷︷ ︸
L




p0(x)

p1(x)

p2(x)
...

pn−1(x)




+




0

0

0
...

an−1pn(x)




= x




p0(x)

p1(x)

p2(x)
...

pn−1(x)




.

Clearly, λ is a root of the polynomial pn(x) if and only if λ is an eigenvalue
of the finite-dimensional tridiagonal matrix L. Other than this requirement
of special values for λ, this finite-dimensional eigenvalue problem remains
a segment of the semi-infinite system (5.24). As far as the evolution of
the entries of L is concerned, it is the same as those of J as long as λ is
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time-invariant. This isospectrality is precisely what is entailed in the one-
dimensional Schrödinger equation (5.19). Under the condition of isospec-
trality throughout the evolution, the theory developed above for the semi-
infinite Toda lattice remains applicable to the finite-dimensional eigenvalue
problem. In particular, the solution to the finite-dimensional Toda lattice
can still be represented in terms of moments.

5.4. Tau functions and determinantal solution

The second approach utilizes the notion of τ functions originally introduced
by the ‘Kyoto school’ as a central element in the description of the soliton
theory for the Kadomtsev–Petviashvili or Hirota–Miwa hierarchies (Date,
Kashiwara, Jimbo and Miwa 1983, Hirota, Tsujimoto and Imai 1993, Pöppe
1989). We limit our attention in this section to the basic idea applied to
the Toda lattice only.

With the change of variable,

ck(t) := a2
k

(
t

2

)
, (5.37)

the off-diagonal entries in the Toda lattice (5.32) can be expressed as a
second-order but self-contained equation,

d2 ln ck

dt2
= ck+1 − 2ck + ck−1. (5.38)

If we impose another sequence of new variables {τk(t)} implicitly via the
relationship

ck =
τk+1τk−1

τ2
k

, (5.39)

then naturally we have

ln ck = ln τk+1 − 2 ln τk + ln τk−1. (5.40)

Upon comparison of (5.38) and (5.40), a compatibility condition is that

ck =
d2 ln τk

dt2
(5.41)

or, equivalently, that {τk} must satisfy the Hirota bilinear form

τk
d2τk

dt2
−

(
dτk

dt

)2

= τk−1τk+1, (5.42)

with τ0 ≡ 1. The bilinear form (5.42) is sufficient for generating a sequence
{τk(t)} of solution recursively. For example, starting with an arbitrary
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initial value τ1(t) = φ(t) that is infinitely differentiable, we obtain

τ2(t) = φ
d2φ

dt2
−

(
dφ

dt

)2

,

τ3(t) = −

(
d2φ

dt2

)3

+ φ

(
d2φ

dt2

)
d4φ

dt4
−

(
dφ

dt

)2 d4φ

dt4

+ 2

(
dφ

dt

)(
d2φ

dt2

)
d3φ

dt3
− φ

(
d3φ

dt3

)2

,

and so on. Obviously, the expression for τk(t) becomes more and more
involved when k gets higher. The beauty of the τ functions is that there is
a much better representation for τk(t) in general.

From a given φ(t), define the Hankel determinant Ĥk(t) by

Ĥk(t) := det




φ φ(1) . . . φ(k−1)

φ(1) φ(2) φ(k)

...
...

φ(k−1) φ(k) . . . φ(2k−2)


, (5.43)

where for simplicity we adopt the abbreviation

φ(ℓ) =
dℓφ

dtℓ
, ℓ = 1, 2, . . . .

Let Ĥk

[
i
j

]
denote the determinant of the submatrix by deleting the ith row

and the jth column from the matrix defining Ĥk. Observe that

dĤk

dt
= Ĥk+1

[
k + 1

k

]
, (5.44)

d2Ĥk

dt2
= Ĥk+1

[
k
k

]
. (5.45)

On the other hand, recall the Sylvester determinant identity (Horn and
Johnson 1990)

Ĥk+1Ĥk−1 = det




Ĥk+1

[
k + 1
k + 1

]
Ĥk+1

[
k + 1

k

]

Ĥk+1

[
k

k + 1

]
Ĥk+1

[
k
k

]


. (5.46)

In conclusion, we see that Ĥk(t) satisfies precisely the differential equation
(5.42). As a consequence, we have obtained a closed form solution for ck(t)
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via (5.39), where τk(t) is given by

τk(t) = det




φ φ(1) . . . φ(k−1)

φ(1) φ(2) φ(k)

...
...

φ(k−1) φ(k) . . . φ(2k−2)


. (5.47)

The existence of a determinantal solution to the Toda lattice provides
insightful information for the discretization of integrable systems (Iwasaki
and Nakamura 2006). With appropriate discretization, for example, it can
be shown that the above formula leads to the Rutishauser qd algorithm
(Nakamura 2004, Rutishauser 1954). Instead of detailing here how this can
be done for the eigenvalue computation, which is a well-studied subject,
we shall demonstrate a similar application to the much more sophisticated
singular value decomposition in the next section.

6. Lotka–Volterra equation and singular values

Given a rectangular matrix A0 ∈ R
m×n with m ≥ n, the singular value

decomposition (SVD) of A0 is a factorization of the form

A0 = U0Σ0V
⊤
0 , (6.1)

where U0 ∈ R
m×m and V0 ∈ R

n×n are unitary matrices and Σ0 ∈ R
m×n is a

diagonal matrix with non-negative diagonal entries. The notion of SVD has
been a powerful tool for matrix analysis and has been a centrepiece in many
areas of applications (Golub and Van Loan 1996, Horn and Johnson 1990).

The use of the SVD and associated ideas has a rich history. In the interest-
ing treatise of Stewart (1993), the early history of the SVD was traced back
to Beltrami in 1873 and Jordan in 1874. Before high-speed digital com-
puters became available, the SVD could only be approximated (Chu and
Funderlic 2002, Horst 1965). Today, there are a number of highly efficient
ways to compute the SVD (Demmel, Gu, Eisenstat, Slapničar, Veselić and
Drmač 1999). Some are perhaps more polished and possibly more accurate
than others (Demmel and Kahan 1990). In this section, we consider only
the basic and conventional approach proposed by Golub and Kahan (1965).

A standard practice in the SVD computation consists of two phases. First,
two orthogonal matrices P1 and Q1 are found such that B0 = P⊤

1 A0Q1 is
in bidiagonal form. This step of reduction can be done directly. Then an
iterative procedure is employed to compute the SVD of B0. This main step
of iteration is mathematically equivalent to the QR algorithm applied to the
tridiagonal matrix B⊤

0 B0, except that the product B⊤
0 B0 is never formed

explicitly. Needless to say, extra tactics, such as implicit-shift, could be
added to the iterative process to increase efficiency in computation.
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6.1. SVD flow

In view of how the Toda lattice is related to the QR algorithm, Chu (1986b)
proposed a peculiar continuous dynamical system of the form

dB

dt
= BΠ0(B

⊤B) − Π0(BB⊤)B, B(0) = B0, (6.2)

where Π0 is the operator defined in (5.13), and proved that the sequence
{B(ℓ)} produced by B(t) corresponds to the iterates produced by the
Golub–Kahan SVD algorithm. One special feature of (6.2) is that B(t)
stays bidiagonal for all t. What other properties of this SVD flow can we
exploit for applications?

Without loss of generality, we shall assume henceforth that B0 is an n×n
matrix. By denoting

B(t) := diag

{
b2(t) . . . b2n−2(t)

b1(t) b3(t) . . . b2n−1(t)

}
,

and defining

u2k−1(t) := b2
2k−1

(
t

2

)
,

u2k(t) := b2
2k

(
t

2

)
,

the differential system (6.2) can be condensed into the expression

duk

dt
= uk(uk+1 − uk−1), k = 1, 2, . . . , 2n − 1, (6.3)

with u0(t) ≡ 0 and u2n(t) ≡ 0, which is known as the continuous-time finite
Lotka–Volterra equation.

The dynamical system (6.3) is Hamiltonian, that is, it can be written in
the form of Hamilton’s equations (Deift, Demmel, Li and Tomei 1991). The
system is also integrable and enjoys a determinantal solution which can be
derived from the theory of τ functions as follows.

Define a change of variable by

uk =
τk+2τk−1

τk+1τk
. (6.4)

Clearly, we have

d lnuk

dt
=

d

dt
ln

τk+2

τk+1
−

d

dt
ln

τk

τk−1
. (6.5)

A comparison between (6.3) and (6.5) suggests that a compatibility condi-
tion could be

τk+2τk−1

τk+1τk
=

d

dt
ln

τk+1

τk
, (6.6)
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which is equivalent to

dτk

dt
τk+1 − τk

dτk+1

dt
+ τk−1τk+2 = 0. (6.7)

The differential equation (6.7) can be used to generate τk(t) recursively.
Assuming starting values τ−1 ≡ 0, τ0 ≡ 1, τ1(t) = 1 and τ2(t) = ψ(t), we
obtain from (6.7)

τ3 =
dψ

dt
,

τ4 = det

[
ψ ψ(1)

ψ(1) ψ(2)

]
,

and in general it can be proved that (Tsujimoto 1995)

τ2k−1 = Hk−1,1, (6.8)

τ2k = Hk,0, (6.9)

where

Hk,j(t) := det




ψ(j) ψ(j+1) . . . ψ(j+k−1)

ψ(j+1) ψ(j+2) . . . ψ(j+k)

...
...

...

ψ(j+k−1) ψ(j+k) ψ(j+2k−2)


, j = 0 or 1, (6.10)

is the determinant of a k × k Hankel matrix and

H−1,j(t) ≡ 0, H0,j(t) ≡ 1, Hn+1,j(t) ≡ 0. (6.11)

The general solution to the Lotka–Volterra equation, therefore, is given by
the formula (Tsujimoto, Nakamura and Iwasaki 2001)

u2k−1(t) =
Hk,1(t)Hk−1,0(t)

Hk,0(t)Hk−1,1(t)
, (6.12)

u2k(t) =
Hk+1,0(t)Hk−1,1(t)

Hk,1(t)Hk,0(t)
, k = 1, 2, . . . , n, (6.13)

By assuming that all the derivatives of ψ are obtainable from elementary
calculus, it is true in principle that all these Hankel determinants can be
calculated algebraically. Since all quantities involved in (6.12) and (6.13)
are now in the analytic form, we may say that the SVD flow and, hence,
the iterates from the SVD algorithm are representable in closed form.

This determinantal solution for the continuous Lotka–Volterra equation
can be utilized to effectuate numerical computation. Indeed, it motivates
the notion of integrable discretization of (6.3), which we consider in the
next section.
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6.2. Integrable discretization

A key step in the integrable discretization of the Lotka–Volterra equation
(6.3) is a particular Euler-type scheme of the form (Hirota et al. 1993)

u
[ℓ+1]
k = u

[ℓ]
k + δ

(
u

[ℓ]
k u

[ℓ]
k+1 − u

[ℓ+1]
k u

[ℓ+1]
k−1

)
, (6.14)

where u
[ℓ]
k represents the approximation solution of uk(t) at t = ℓδ with

boundary conditions u
[ℓ]
0 ≡ 0 and u

[ℓ]
2n ≡ 0 for all ℓ. Be aware of the notation

that the superscript [ℓ+1] in brackets indicates the advance in time by a step
of size δ whereas the subscript k+1 indicates the (k + 1)th bidiagonal entry
of the matrix B(t).

In hindsight, the scheme (6.14) appears to be simply a mixture of both
explicit and implicit Euler methods. The fact of the matter is that it takes
considerable insight to get the right combination so that, as in the continu-
ous case, the discrete Lotka–Volterra equation (6.14) still enjoys a determi-
nantal solution. Specifically, we claim without proof that the solution to the
finite difference equation (6.14) is given by (Iwasaki and Nakamura 2002)

u
[ℓ]
2k−1 =

H̃
[ℓ]
k,1H̃

[ℓ+1]
k−1,0

H̃
[ℓ]
k,0H̃

[ℓ+1]
k−1,1

, (6.15)

u
[ℓ]
2k =

H̃
[ℓ]
k+1,0H̃

[ℓ+1]
k−1,1

H̃
[ℓ]
k,1H̃

[ℓ+1]
k,0

, k = 1, 2, . . . , n, (6.16)

where H̃
[ℓ]
k,j is the Hankel determinant defined by

H̃
[ℓ]
k,j = det




ψ̃
[ℓ]
j ψ̃

[ℓ+1]
j . . . ψ̃

[ℓ+k−1]
j

ψ̃
[ℓ+1]
j ψ̃

[ℓ+2]
j . . . ψ̃

[ℓ+k]
j

...
...

...

ψ̃
[ℓ+k−1]
j ψ̃

[ℓ+k]
j ψ̃

[ℓ+2k−2]
j




, j = 0 or 1, (6.17)

with boundary conditions

H̃
[ℓ]
−1,j ≡ 0, H̃

[ℓ]
0,j ≡ 1, H̃

[ℓ]
n+1,j ≡ 0, (6.18)

in which {ψ̃
[ℓ]
0 } is a given initial sequence and ψ̃

[ℓ]
1 is the quotient difference

defined by

ψ̃
[ℓ]
1 :=

ψ̃
[ℓ+1]
0 − ψ̃

[ℓ]
0

δ
. (6.19)

The knowledge of a solution u
[ℓ]
k in the form of (6.15) and (6.16) enables

us to gain considerable insight into its asymptotic behaviour as ℓ goes to
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infinity. We shall skip that part of discussion in this paper, but rather pay
more attention to a possible numerical implementation for the remainder of
this section.

We modify (6.14) to the more general variable-step scheme

u
[ℓ+1]
k

(
1 + δ[ℓ+1]u

[ℓ+1]
k−1

)
= u

[ℓ]
k

(
1 + δ[ℓ]u

[ℓ]
k+1

)
, (6.20)

referred to hereafter as the vdLV scheme. In a series of extensive stud-
ies (Tsujimoto et al. 2001, Iwasaki and Nakamura 2002, 2004, 2006), the
vdLV scheme has been implemented as an alternative means for the SVD
computation. Numerical experiments show its strong competitiveness with
existing SVD software packages. We briefly outline the ideas below, which
also provides another example of Figure 1.1 on how a differential system
might be carefully discretized and implemented to become an effective al-
gorithm.

It will be most convenient if we present the interrelationships in matrix
form, even though the actual computation should involve only a few scalars.
For each ℓ, define two sequences of scalars,

q
[ℓ]
i :=

1

δ[ℓ]

(
1 + δ[ℓ]u

[ℓ]
2i−2

)(
1 + δ[ℓ]u

[ℓ]
2i−1

)
, i = 1, . . . , n, (6.21)

e
[ℓ]
j := δ[ℓ]u

[ℓ]
2j−1u

[ℓ]
2j , j = 1, . . . n − 1, (6.22)

and assemble them into two n × n bidiagonal matrices,

L[ℓ] :=




q
[ℓ]
1 0 0

1 q
[ℓ]
2

. . .

. . .

1 q
[ℓ]
n




, (6.23)

R[ℓ] :=




1 e
[ℓ]
1

0 1
. . .

. . .

e
[ℓ]
n−1
1




. (6.24)

From the relationship (6.20), it is readily verifiable that the matrix equation

L[ℓ+1]R[ℓ+1] = R[ℓ]L[ℓ] −

(
1

δ[ℓ]
−

1

δ[ℓ+1]

)
In (6.25)

holds for all ℓ. It should not be a surprise to discover that the above
formulation corresponds to the so-called progressive qd algorithm already
described by Rutishauser (1954, 1960).
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As a matter of fact, equation (6.25) is even more closely related to the so-
called differential quotient-difference algorithm with shift (dqds) proposed
by Fernando and Parlett (1994) and implemented in Parlett and Marques
(2000). More specifically, if we abbreviate the left-hand side of the vdLV
scheme in (6.20) as

w
[ℓ]
k := u

[ℓ]
k

(
1 + δ[ℓ]u

[ℓ]
k−1

)
, (6.26)

and introduce the tridiagonal matrix Y [ℓ] defined by

Y [ℓ] := L[ℓ]R[ℓ] −
1

δ[ℓ]
In, (6.27)

then we find from (6.20) that Y [ℓ] can be expressed in the form

Y [ℓ] =




w
[ℓ]
1 w

[ℓ]
1 w

[ℓ]
2 0 0

1 w
[ℓ]
2 + w

[ℓ]
3 w

[ℓ]
3 w

[ℓ]
4

. . .

. . .

. . .

0 w
[ℓ]
2n−3w

[ℓ]
2n−2

0 1 w
[ℓ]
2n−2 + w

[ℓ]
2n−1




, (6.28)

and that the relationship

Y [ℓ+1] = R[ℓ]Y [ℓ]R[ℓ]−1
(6.29)

holds for all ℓ. Clearly, all matrices in the sequence {Y [ℓ]} are isospectral. To
connect back to our original goal of computing the singular values, observe

that w
[ℓ]
k > 0 as long as u

[0]
k > 0 and δ[ℓ] > 0, which can easily be achieved.

We thus can symmetrize the tridiagonal matrix Y [ℓ] by a diagonal similarity
transformation,

Y
[ℓ]
S := D[ℓ]−1

Y [ℓ]D[ℓ], (6.30)

with

D[ℓ] := diag

{
n−1∏

i=1

√
w

[ℓ]
2i−1w

[ℓ]
2i ,

n−1∏

i=2

√
w

[ℓ]
2i−1w

[ℓ]
2i , . . . ,

√
w

[ℓ]
2n−3w

[ℓ]
2n−2, 1

}
.

Again, it is easy to check that the positivity of w
[ℓ]
k guarantees that Y

[ℓ]
S

enjoys a Cholesky decomposition

Y
[ℓ]
S = B[ℓ]⊤B[ℓ], (6.31)
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with

B[ℓ] :=




√
w

[ℓ]
1

√
w

[ℓ]
2

0

√
w

[ℓ]
3

√
w

[ℓ]
4

. . .

. . .

√
w

[ℓ]
2n−3

√
w

[ℓ]
2n−2√

w
[ℓ]
2n−1




. (6.32)

The above recurrence relationships, all derived from an integrable discretiza-
tion (6.20) of the Lotka–Volterra equation (6.3), have useful application to
the SVD computation. We summarize the discussion thus far in the follow-
ing theorem.

Theorem 6.1. Given the boundary conditions u
[ℓ]
0 ≡ 0 and u

[ℓ]
2n ≡ 0, let

the sequence {u
[ℓ]
k } be generated by the scheme (6.20). Then the singular

values of the bidiagonal matrices {B[ℓ]} which is defined in (6.32) with its

entries {w
[ℓ]
k } given by (6.26) are invariant in ℓ.

For our application, we are interested in computing the singular values of
a given matrix B0. Thus, we need to make sure that the initial values for
the iterative scheme (6.20) should be

u
[0]
k :=

bk(0)2

1 + δ[0]u
[0]
k−1

, k = 1, 2, . . . , 2n − 1. (6.33)

The calculation of u
[ℓ+1]
k proceeds in the fashion depicted in Figure 6.1,

where the quantity

v
[ℓ]
k := u

[ℓ]
k

(
1 + δ[ℓ]u

[ℓ]
k+1

)
(6.34)

is an intermediate value listed for convenience, but is also used later. The
bold-faced arrows point to the input and output in one step of the calcula-
tion. The shaded region indicates the array of initial values and progresses
downward as ℓ increases. In the meantime, it is important to note that the
boundary conditions from the two vertical boxes in Figure 6.1 help to make
the computation explicit in ℓ.

Convergence theory and stability analysis of the vdLV scheme are well
established in the series of papers referred to earlier and, in particular, the
book by Nakamura (2006). It has been proved, for example, that with initial

values (6.33) and any step sizes δ[ℓ] > 0, the sequence {u
[ℓ]
1 , u

[ℓ]
3 , . . . , u

[ℓ]
2n−1}

converges to the squares of singular values of B0 in descending order while
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u
[0]
k−1 u

[0]
k u

[0]
k+1

u
[ℓ]
k−1 u

[ℓ]
k u

[ℓ]
k+1

u
[ℓ+1]
k−1 u

[ℓ+1]
k u

[ℓ+1]
k+1

u
[0]
0

u
[ℓ]
0

u
[ℓ+1]
0

u
[0]
2n

u
[ℓ]
2n

u
[ℓ+1]
2n

v
[ℓ]
k

Figure 6.1. Computing u
[ℓ+1]
k via vdLV .

u
[ℓ]
2k converges to 0 for all k as ℓ goes to infinity. The vdLV scheme (6.20)

enjoys additional nice features: no subtraction is involved and all quantities
are bounded by ‖B0‖, implying its numerical stability.

What we have shown thus far is that the Lotka–Volterra equation gives
rise to, on one hand, the iterates of the standard SVD algorithm when its
solution is sampled at integer times and, on the other hand, an entirely
different iterative scheme when the differential system is discretized under
some proper conditions. The relationship (6.25) indicates that the vdLU
scheme is algebraically equivalent to the dqds with the shift

s :=
1

δ[ℓ]
−

1

δ[ℓ+1]
. (6.35)

However, up to this point, we have not given any clear strategy on how
the step size δ[ℓ] should be selected in the vdLV scheme. In the case of
constant step size δ[ℓ] ≡ δ, Iwasaki and Nakamura (2002) have shown that
the convergence is linear, with asymptotic convergence factor given by

α = max
k=1,...,n−1

σk+1 + 1
δ

σk + 1
δ

,
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where σ1 > σ2 > · · · > σn are the singular values of B0. It implies that
larger step sizes might reduce the value of α to a certain extent. Linear
convergence with the built-in shift (6.35) certainly cannot make the vdLV
algorithm efficient enough.

Strictly speaking, the shift (6.35) has never entered into the matrix B[ℓ]

effectually. In the case of constant step size, s = 0. In the case of variable
step size, the effect of s is diminished as δℓ] is increased. The true shift that
is really needed should be of the form (Iwasaki and Nakamura 2006)

B
[ℓ]⊤

B
[ℓ]

= B[ℓ]⊤B[ℓ] − θ[ℓ]2, (6.36)

while we keep the bidiagonal form

B
[ℓ]

:=




√
w

[ℓ]
1

√
w

[ℓ]
2

0

√
w

[ℓ]
3

√
w

[ℓ]
4

. . .

. . .

√
w

[ℓ]
2n−3

√
w

[ℓ]
2n−2√

w
[ℓ]
2n−1




. (6.37)

Upon comparing the entries, we find the nonlinear relationship that

w
[ℓ]
2k + w

[ℓ]
2k+1 = w

[ℓ]
2k + w

[ℓ]
2k+1 − θ[ℓ]2, (6.38)

w
[ℓ]
2k−1w

[ℓ]
2k = w

[ℓ]
2k−1w

[ℓ]
2k, k = 0, . . . , n − 1, (6.39)

with w
[ℓ]
0 = w

[ℓ])
0 ≡ 0. Though nonlinear, this relationship is a bijection

correspondence between
(
w

[ℓ]
1 , . . . , w

[ℓ]
2n−1

)
and

(
w

[ℓ]
1 , . . . , w

[ℓ]
2n−1

)
. The non-

linear map in (6.38) and (6.39) can easily be carried out by recurrence for
computation, starting at the vertical box on the left with zero boundary
conditions and progressing to the right, as indicated in Figure 6.2.

Recall that

v
[ℓ]
k = w

[ℓ+1]
k ,

by definitions in (6.26) and (6.34), and that

u
[ℓ+1]
k =

w
[ℓ+1]
k

1 + δ[ℓ+1]u
[ℓ+1]
k−1

,
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[ℓ]
0 w
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2k−1 w
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2k w

[ℓ]
2k+1
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[ℓ]
0 w

[ℓ]
2k−1 w

[ℓ]
2k w

[ℓ]
2k+1

Figure 6.2. Updating w
[ℓ]
k to w

[ℓ]
k with shift

(dashed line (6.38); solid line (6.39)).

by the vdLV scheme (6.20). The modified scheme with shift becomes

u
[ℓ+1]
k =

w
[ℓ+1]
k

1 + δ[ℓ+1]u
[ℓ+1]
k−1

. (6.40)

This variant, called the mdLVs, has been studied thoroughly in Iwasaki and
Nakamura (2006). The diagram in Figure 6.1 is therefore modified to be-
come Figure 6.3. Be aware of the possible ‘psychological illusion’ perceived
in Figure 6.3. It does appear that the emphasis is on the computation

of u
[ℓ+1]
k . However, the diagram can also be interpreted as a path to ad-

vance w
[ℓ]
k and w

[ℓ]
k to w

[ℓ+1]
k and w

[ℓ+1]
k , respectively, whereas u

[ℓ]
k should be

regarded as an intermediate value for convenience.
Many more research results and interesting properties could have been

described. Singular vector computation by taking advantage of the mdLVs
scheme, for example, is another important topic. However, to stay within
the theme of this article, we shall stop short of giving more detailed shift
strategies and convergence analysis which are available in the literature
(Nakamura 2006). Suffice it to say that numerical experiments reported
in Takata, Iwasaki, Kimura and Nakamura (2005, 2006) seem to suggest
strongly that the resulting algorithm is competitive in both speed and ac-
curacy with existing SVD packages.

The discourse presented in Sections 5 and 6 appears verbose. However,
these two sections manifest a successful story about viewing numerical linear
algebra algorithms as dynamical systems. We hope to have accomplished
two goals through this important deliberation.

First, powerful discrete dynamical systems such as the QR algorithm and
the SVD algorithm do have their continuous counterparts, namely, the Toda
lattice and the Lotka–Volterra equation, which often arise from seemingly
rather distinct fields of disciplines. We think it is truly remarkable that
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Figure 6.3. Computing u
[ℓ+1]
k via mdLVs.

diverse topics, such as soliton theory, integrable systems, continuous frac-
tions, τ functions, orthogonal polynomials, the Sylvester identity, moments,
and Hankel determinants, can all play together, intertwine, and eventu-
ally lead to the fact abstractly, but literally, that the eigenvalues and the
singular values of a given matrix can be expressed as the limit of some
closed-form formulas! We hope to have offered complete particulars on
the determinantal solutions to the Toda lattice and the Lotka–Volterra
equation, which we know are tied to the eigenvalues and singular values
of the underlying matrix.
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Secondly, via a rather thorough description of the vdLV scheme, we hope
to have demonstrated our point in Figure 1.1 that a careful discretization
of a continuous dynamical system may indeed lead to an effective numer-
ical algorithm. By a ‘careful discretization’, it is important to note that
the discrete scheme (6.20) maintains its complete integrability, which in the
limit is the same integrability as that of the original Lotka–Volterra equa-
tion. Integrability-preserving discretization seems to be the key to success
here, though a great many details such as shift strategies and implemen-
tation tactics also demand considerable attention. It is interesting to note
the route we have taken, from the classical Golub–Kahan algorithm to the
Lotka–Volterra equation, to the dLV scheme, to the dqds algorithm, and
then to a brand new method, mdLVs, for computing the singular value
decomposition.

7. Dynamical systems as group actions

Linear transformation is one of the simplest, yet most profound, ways to
describe the relationship between two vector spaces. Over linear subspaces
with a countable basis, linear transformations can be conveniently repre-
sented by matrices. It is often desirable to represent a linear transformation
in some characteristic way, leading to the notion of identifying a matrix
by its canonical form. The canonical form, most frequently expressed in
terms of matrix decomposition, can facilitate discussions that, otherwise,
would be complicated and involved. For years researchers have taken great
steps to describe, analyse, and modify algorithms to reduce a matrix to its
canonical form.

Many types of canonical forms exist in the literature. Those feasible
for numerical computation include the spectral decomposition for sym-
metric matrices, the singular value decomposition for rectangular matri-
ces, and the Schur decomposition for general square matrices (Golub and
Van Loan 1996, Horn and Johnson 1990). The Jordan canonical form, on
one hand, is perhaps the most fundamental and classical in matrix the-
ory. On the other hand, the Jordan decomposition is generally considered a
‘taboo’ for numerical computation because it is hard to distinguish between
eigenvalues that are repeated exactly and eigenvalues that are clustered
closely together (Beelen and Van Dooren 1990, Golub and Wilkinson 1976).
Nonetheless, it might be worthwhile to mention the notion of pejorative
manifold proposed in an unpublished paper by Kahan (1972), who argues
that multiple roots are well behaved under perturbation when the multiplic-
ity structure is preserved. Loosely speaking, it is suggested that problems
that are sensitive to arbitrary perturbations might be less sensitive to struc-
tured perturbations. Exploiting this idea, Zeng and Li (2007) have recently
proposed an interesting approach to tackle the Jordan decomposition.
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Thus far, most matrix decompositions are processed through iterative
procedures whose success is made evident by the many available discrete
methods. Our goal in this section is to recast some of those iterative schemes
as dynamical systems via group actions.

We need to adjust our mind-set before continuing: the meaning of a
canonical form should be understood with a much broader field of view than
just matrix factorizations. Arnold (1988) asks a question in a similar spirit:

‘What is the simplest form to which a family of matrices depending smoothly on
the parameters can be reduced by a change of coordinates depending smoothly on
the parameters?’

Obviously, an essential component to any answer is a qualification of the
simplest form to which, and a mechanism by which, the coordinates are
continuously changed. Before being specific about the qualification and
the mechanism, we may categorically characterize the proposed procedure,
whether discrete or continuous in nature, as a realization process. The
canonical form, or the simplest form, that the process intends to realize
ultimately should be interpreted broadly as any ‘mode’ from which we gain
the agility to think and draw conclusions. Some useful modes, as well as
the mechanisms to realize these modes, will be exemplified in the subse-
quent discussion.

The precise meaning of our points above will become clear later, but
for now we hastily point out that, as a whole, the procedure to find the
simplest form in most applications appears to follow the orbit of a certain
matrix group action on the underlying matrix. This connection should not
come as a surprise because the representation of a group by its homomor-
phisms into bijective linear maps over a certain vector space is well known
(Curtis 1984, Shaw 1982, Smirnov 1970). For groups whose elements de-
pend on continuously varying parameters, so do the corresponding matrix
representations. The obvious advantage of this tie is that we have the group
structure on one side and the matrix structure on the other side. A ma-
trix group, that is, a subset of non-singular matrices which are closed under
matrix multiplication and inversion, does form a Lie group (Howe 1983).
The well-developed Lie theory therefore lends us greater advantages over
iterations lacking this structure.

The question then becomes: What canonical form can a matrix, or a
family of matrices, be linked to by the orbit of a group action? The choice
of the group, the definition of the action, and the intended targets will
constrain the various paths of transitions and, thus, the algorithms. Earlier
work along these lines can be found in Della-Dora (1975). We will try to
expound the various aspects of the recent development and applications in
this direction. Some newly developed dynamical systems seem able to offer
promising channels to tackle some linear algebra problems that, otherwise,
are difficult to solve by iterative means.
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7.1. Group actions and canonical forms

In a dynamical system, the state variable gets evolved in accordance with a
certain rule. How the rule of transition is defined determines the dynamical
behaviour. The emphasis of this section is on a specific rule characterized
by group actions.

Given a group G and a set V, a group action of G on V is a map µ :
G × V −→ V satisfying the associative law

µ(gh,x) = µ(g, µ(h,x)), g, h ∈ G, (7.1)

Table 7.1. Examples of classical matrix groups over R.

Group Subgroup Notation Characteristics

general linear Gl(n) {A ∈ R
n×n | det(A) �= 0}

special linear Sl(n) {A ∈ Gl(n) | det(A) = 1}

upper triangular U(n) {A ∈ Gl(n) | A is upper triangular}

unipotent Unip(n) {A ∈ U(n) | aii = 1 for all i}

orthogonal O(n) {Q ∈ Gl(n) | Q⊤Q = I}

generalized orthogonal OS(n) {Q ∈ Gl(n) | Q⊤SQ = S},

S is a fixed symmetric matrix

symplectic Sp(2n) OJ (2n), J :=

»
0 I
−I 0

–

Lorentz Lor(n, k) OL(n + k),

L := diag{1, . . . , 1
| {z }

n

,−1, . . . − 1
| {z }

k

}

affine Aff (n)

»
A t

0 1

–

| A ∈ Gl(n), t ∈ R
n

ff

translation Trans(n)

»
I t

0 1

–

| t ∈ R
n

ff

isometry Isom(n)

»
Q t

0 1

–

| Q ∈ O(n), t ∈ R
n

ff

product of G1 and G2 G1 × G2 {(g1, g2) | g1 ∈ G1, g2 ∈ G2},

(g1, g2) ∗ (h1, h2) := (g1h1, g2h2),

G1 and G2 are given groups

automorphism GM {A ∈ Gl(n) | 〈Ax, Ay〉M = 〈x, y〉M},

〈x, y〉M = x
⊤My

M is a given matrix
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and the identity property

µ(e,x) = x, (7.2)

where e is the identity element in G, for all x ∈ V. Given a fixed x ∈ V,
the orbit of x associated to an action µ of G is defined to be the set

OrbG(x) := {µ(g,x)|g ∈ G}. (7.3)

For our applications, we are interested in using matrix groups and various
actions to help transform a given matrix into an appropriate canonical form.
The transformation is to take place along the associated orbit of the given
matrix. To get this idea going, we need four components working together:
a group that characterizes the coordinates to be used, an action that con-
strains the transformations to be allowed, a canonical form that sets the
goal to be reached, and a rule that delineates the path to be followed. Each
of these four components affects the final result.

For demonstration, Table 7.1 is a short list of matrix groups compiled from
the books of Baker (2002), Chu and Golub (2005) and Curtis (1984). We
remark that the automorphism group GM associated with a non-degenerate
bilinear form 〈x,y〉M = x⊤My contains as special cases the orthogonal
group and the symplectic group (Mackey, Mackey and Tisseur 2003).

Table 7.2 typifies some group actions that have been commonly used in
numerical linear algorithm algorithms. Traditionally, numerical analysts
prefer to use the orthogonal group for actions because of its cost efficiency
and numerical stability. Such a restriction, however, could have limited the
canonical forms that we otherwise would be able to reach by different groups.

Table 7.2. Examples of group actions and their applications.

Set V Group G Action µ(g, A) Application

R
n×n any subgroup g−1Ag conjugation

R
n×n O(n) g⊤Ag orthogonal similarity

R
n×n

× . . . × R
n×n

| {z }

k

any subgroup (g−1A1g, . . . , g−1Akg) simultaneous reduction

S(n) × SP D(n) any subgroup (g⊤Ag, g⊤Bg) symm. positive definite

pencil reduction

R
n×n × R

n×n O(n) × O(n) (g⊤

1
Ag2, g⊤

1
Bg2) QZ decomposition

R
m×n O(m) × O(n) g⊤

1
Ag2 singular value decomp.

R
m×n × R

p×n O(m) × O(p) × Gl(n) (g⊤

1
Ag3, g⊤

2
Bg3) generalized

singular value decomp.
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Table 7.3 makes evident the wide scope of canonical forms that group
actions can (or be desired to) accomplish, ranging from a typical structure
with a specified pattern of zeros, such as a diagonal, tridiagonal, or tri-
angular matrix, to a matrix with a specified construct, such as Toeplitz,
Hamiltonian, stochastic, or other linear varieties, to a matrix with a speci-
fied algebraic constraint, such as low rank or non-negativity.

With the group, action and orbit in place, we finally need a properly de-
fined dynamical system, either continuous or discrete, so that its integral
curves or iterates stay on the specified orbit and connect one state to the
next state. The Toda lattice and the Lotka–Volterra equation discussed
earlier serve as typical examples in this regard, although in both cases the
group actions are built into the dynamical systems and are not exploited
explicitly. We shall develop a general framework of the projected gradient

Table 7.3. Examples of canonical forms used in practice.

Canonical form Also known as Action

bidiagonal J quasi-Jordan decomp., P−1AP = J,

A ∈ R
n×n P ∈ Gl(n)

diagonal Σ sing. value decomp., U⊤AV = Σ,

A ∈ R
m×n (U, V ) ∈ O(m) × O(n)

diagonal pair (Σ1, Σ2) gen. sing. value decomp., (U⊤AX, V ⊤BX) = (Σ1, Σ2),

(A, B) ∈ R
m×n × R

p×n (U, V, X) ∈ O(m) × O(p) × Gl(n)

upper quasi-triangular H real Schur decomp., Q⊤AQ = H,

A ∈ R
n×n Q ∈ O(n)

upper quasi-triangular H gen. real Schur decomp., (Q⊤AZ, Q⊤BZ) = (H, U),

upper triangular U A, B ∈ R
n×n Q, Z ∈ O(n)

symmetric Toeplitz T Toeplitz inv. eigenv. prob., Q⊤ diag{λ1, . . . , λn}Q = T ,

{λ1, . . . , λn} ⊂ R is given Q ∈ O(n)

non-negative N ≥ 0 non-neg. inv. eigenv. prob., P−1 diag{λ1, . . . , λn}P = N ,

{λ1, . . . , λn} ⊂ C is given P ∈ Gl(n)

linear variety X matrix completion prob., P−1{λ1, . . . , λn}P = X,

with fixed entries {λ1, . . . , λn} ⊂ C is given P ∈ Gl(n)

at fixed locations Xiν ,jν = aν , ν = 1, . . . , ℓ

nonlinear variety test matrix construction, P−1ΛP = U⊤ΣV

with fixed singular values Λ = diag{λ1, . . . , λn} and P ∈ Gl(n), U, V ∈ O(n)

and eigenvalues Σ = diag{σ1, . . . σn} are given

maximal fidelity structured low-rank approx.
`
diag(USS⊤U⊤)

´
−1/2

USV ⊤,

A ∈ R
m×n (U, S, V ) ∈ O(m) × R

k
×

× O(n)
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approach in the next section to help to construct other useful dynamical sys-
tems. The projected gradient flows from continuous group actions are often
easy to formulate and analyse, and are sometimes able to tackle problems
that are seemingly impossible to resolve by conventional discrete methods.

An area that has been active for research, and remains open for further
work, is to develop numerical algorithms that can effectively trace dynami-
cal systems arising from various group actions. We note that there are many
new techniques developed recently for dynamical systems on Lie groups, in-
cluding the RK-MK methods (Engø 2003, Munthe-Kaas 1998), Magnus and
Fer expansions (Blanes, Casas, Oteo and Ros 1998, Zhang and Deng 2005),
and so on. A good collection of Lie structure-preserving algorithms and
pertaining references can be found in the seminal review paper by Iserles,
Munthe-Kaas, Nørsett and Zanna (2000) and the book by Hairer, Lubich
and Wanner (2006). These new geometric integration techniques certainly
can benefit the computations needed for the projected gradient flow, but still
we are seeking a method that also takes into account the descent property
of a gradient flow. For a gradient flow where finding its stable equilibrium
point is the ultimate goal of computation, recall that the pseudo-transient
continuation described in Section 2.2 has been suggested as a possible nu-
merical method.

7.2. Projected gradient flows

The idea of projected gradient flows stems from the constrained least-
squares approximation to a desirable canonical form. From a given matrix
A in a subset V of matrices of fixed sizes, the constraint on the variable
is that the transformation of A must be limited to the orbit OrbG(A) de-
termined by a prescribed continuous matrix group G and a group action
µ : G × V −→ V. The objective function itself is built with two addi-
tional limitations. One is a differentiable map f : V −→ V designed to
regulate certain ‘inherent’ properties such as symmetry, diagonal, isospec-
trality, low rank, or other algebraic conditions. The other is a projection
map P : V −→ P, where P denotes the subset of matrices in V carrying
a certain desirable structure, that is, the canonical form. The set P could
be a singleton, an affine subspace, or a cone, or other geometric entities.
Consider the functional F : G −→ R where

F (Q) :=
1

2
‖f(µ(Q, A)) − P (µ(Q, A))‖2

F . (7.4)

The goal is to minimize F over the group G. The meaning of this constrained
minimization is that, while staying in the orbit of A under the action of µ
and maintaining the inherent property guaranteed by the function f , we
look for the element Q ∈ G so that the matrix f(µ(Q, A)) best realizes the
desired canonical structure in the sense of least squares.
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In principle, the functional (7.4) can be minimized by conventional opti-
mization techniques which mostly are iterative in nature. However, we find
that the projected gradient flow approach can conveniently be formulated
as a dynamical system,

dQ

dt
= −ProjTQG∇F (Q), (7.5)

where TQG and ∇F (Q) stand for the tangent space of the group G and the
gradient of the objective functional F at Q, respectively.

One advantage of working with a matrix group is that its tangent spaces
at every element g have the same structure as the tangent space g = TeG
at the identity element e of G. More specifically, the tangent space at any
element Q in G is a translation of g via the relationship

TQG = Qg. (7.6)

Thus the projection in (7.5) is fairly easy to do once the tangent space g is
identified.

It might be instructive to illustrate the idea of projection by the following
calculation (Chu and Driessel 1990). By (7.6), the tangent space of O(n)
at any orthogonal matrix Q is

TQO(n) = Qo(n),

where o(n) denotes the subspace of all skew-symmetric matrices in R
n×n.

It can easily be argued that the normal space of O(n) at any orthogonal
matrix Q is

NQO(n) = Qo(n)⊥,

where the orthogonal complement o(n)⊥ is precisely the subspace of all
symmetric matrices. The space R

n×n can be split as the direct sum of

R
n×n = Qo(n) ⊕ Qo(n)⊥.

Any X ∈ R
n×n therefore has the unique orthogonal splitting

X = Q(Q⊤X) = Q

{
1

2
(Q⊤X − X⊤Q)

}
+ Q

{
1

2
(Q⊤X + X⊤Q)

}
.

The projection of X onto the tangent space TQO(n) is therefore given by
the formula

ProjTQO(n)X = Q

{
1

2
(Q⊤X − X⊤Q)

}
. (7.7)

For other groups, the projection can be done in a similar way.
We briefly touch upon the realm of differential geometry with two re-

marks. First, the notion of ‘projected’ gradient described above is indeed
the ‘ordinary’ gradient with respect to the Killing form or the normal met-
ric on the tangent space g (Edelman, Arias and Smith 1999, Tam 2004).
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Secondly, the set g is a Lie subalgebra, that is, its elements are closed under
the Lie bracket operation. The Lie subalgebra g can be characterized as the
logarithm of G in the sense that

g = {M ∈ R
n×n | exp(tM) ∈ G, for all t ∈ R}. (7.8)

The exponential map exp : g → G, as we have seen in Theorem 5.1, is a
central step from a Lie algebra g to the associated Lie group G (Celledoni
and Iserles 2000, Howe 1983). Since exp is a local homeomorphism which
maps a neighbourhood of the zero O in the algebra g onto a neighbourhood
of the identity e in the group G, any dynamical system in G, in the neigh-
bourhood of e, would therefore have a corresponding dynamical system in g,
in the neighbourhood of O. Because of this, the decomposition we have ob-
served in Section 5.1 can be interpreted as follows. It is known that the
Lie group Gl(n) can be decomposed as the product of two Lie subgroups in
the neighbourhood of the identity matrix I if and only if the corresponding
tangent space gl(n) of real-valued n × n matrices can be decomposed into
the sum of two Lie subalgebras. By the decomposition property and the re-
versal property in Theorem 5.1, the Lie structure is apparently not needed
for isospectral flows. A subspace decomposition of gl(n) as is indicated in
(5.8) suffices to guarantee a factorization of a one-parameter semigroup in
the neighbourhood of I as the product of two non-singular matrices, that
is, the decomposition indicated in (5.10).

Before we talk about specific applications, a misconception about the
gradient flow (2.10) in general and the projected gradient flow (7.5) in par-
ticular must be clarified. It is true that the objective value F (x(t)) is
non-increasing in t if x(t) follows the gradient flow (2.10). If F is fur-
ther known to be bounded below, the F (x(t)) converges to a limit value.
However, the flow x(t) itself might not converge at all. Examples can be
constructed to show the case that a local minimum of an infinitely dif-
ferentiable objective function F may not be an equilibrium point of the
differential system (2.10). Likewise, a stable equilibrium point of (2.10)
may not be a local minimum of F at all (Absil and Kurdyka 2006). A
cone-shaped minaret with outside spiral ramp, or a helicoid, can be modi-
fied to serve as examples where a gradient flow converges to a limit cycle.
The important message we want to convey is that infinite smoothness of
the gradient vector field is not sufficient to guarantee the convergence of
a gradient trajectory. A sufficient condition that happens to fit our appli-
cations is the analyticity of the objective function. More specifically, the
�Lojasiewicz–Simon theorem asserts that if the objective function F is real
analytic, then the trajectory of a gradient flow cannot have more than one
limit point (Chill 2003, �Lojasiewicz 1963, Simon 1983). Furthermore, un-
der the analyticity assumption, a stable equilibrium point of the differential
system (2.10) is a local minimum of F , and vice versa (Absil, Mahony and



48 M. T. Chu

Andrews 2005, Absil and Kurdyka 2006). In our applications, group actions,
linear projections and squares of the Frobenius norm are naturally analytic.
Our gradient flows are defined by an analytic vector field, so convergence
is ensured.

7.3. Applications

From the framework outlined above, projected gradient dynamical systems
can be tailored to meet the need arising from various circumstances. We
shall demonstrate four interesting designs in this section. Many additional
applications and the associated dynamical systems can be found in the lit-
erature. See, for instance, the problems discussed in the paper by Brockett
(1993) and the book by Helmke and Moore (1994). Our intention in this
section is to demonstrate the versatility of projected gradient flows. Some
applications can be solved more efficiently by other means, but there are
problems where the continuous dynamical systems approach is particularly
easy to formulate and compute.

Example 7.1. Given a symmetric matrix Λ and a desirable structure P,
suppose we want to find a symmetric matrix that is closest to P and has the
same spectrum as Λ (Chu and Driessel 1990). By defining the isospectral
matrix X := Q⊤ΛQ with Q ∈ O(n), the objective functional F : O(n) → R

is taken to be

F (Q) :=
1

2
‖Q⊤ΛQ − P (Q⊤ΛQ)‖2

F , (7.9)

where the Frobenius norm of a real matrix M is, as usual, defined by

‖M‖F =
√

trace(MM⊤).

It can be verified that the projected gradient flow (7.5) on the group O(n)
is equivalent to the isospectral flow,

dX

dt
= [X, [X, P (X)]], (7.10)

on the orbit OrbO(n)(Λ).

With different choices of Λ and P, the dynamical system (7.10) enjoys
different interpretation of applications. For example, if P (X) = diag(X),
then X(t) stands for a continuous Jacobi-type flow that gradually reduces
the off-diagonal elements of X while maintaining isospectrality. As another
example, by specifying the structure retained in P, the flow (7.10) offers an
avenue to tackle various kinds of very difficult structured inverse eigenvalue
problems (Chu and Golub 2002).

The so-called double bracket flow by Brockett (1991) corresponds to the
special case where P = {N} contains a single constant symmetric matrix N
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and hence P (Q⊤ΛQ) ≡ N . The resulting qualitative behaviour is relatively
easier to analyse, but this seemingly ingenuous nearest matrix approxima-
tion to a fixed matrix has the following sorting property, which appears
universal in a wide spectrum of applications, including the interior-point
algorithm (Faybusovich 1991), the QR algorithm (Deift et al. 1983), mo-
ment maps (Bloch, Brockett and Ratiu 1992) and many others (Helmke and
Moore 1994).

Theorem 7.2. Suppose that both Λ = diag{λ1, . . . , λn} and the spectrum
of N have distinct elements. Then X = Q⊤ΛQ is the unique nearest matrix
to N on the isospectral orbit of Λ if and only if the columns of Q⊤ are
the orthonormal eigenvectors of N , corresponding to eigenvalues arranged
in the same order as {λ1, . . . , λn}.

We have to mention one remarkable connection. If Λ is a tridiagonal
matrix to begin with and if N = diag{n, n − 1, . . . , 2, 1}, then the double
bracket flow becomes exactly the Toda lattice that has been discussed in
great length in Section 5.1. The sorting property asserted in Theorem 7.2
therefore explains the sorting property of the QR algorithm. It is interesting
that ‘the same set of equations is thus Hamiltonian and a gradient flow on
the isospectral set’ (Bloch et al. 1992).

Given the wide range of applications, an effective way of integrating either
the isospectral dynamical system (7.10) for X(t) over the orbit or the asso-
ciated parameter dynamical system for Q(t) over the group therefore would
be extremely useful and desirable. We think that an efficient discretization
would probably not come from the traditional numerical ODE approaches,
but rather could be more in line with the vdLV approach, where a certain
structure is preserved. On the other hand, it is worth noting that the ver-
satile double bracket flow dX

dt = [X, [X, N ]] might be handled differently.

By representing the isospectral solution in the form X(t) = eΩ(t)X0E
−Ω(t),

Iserles (2002) has developed an interesting approach to the discretization
of X(t). Specifically, each term in the Taylor series expansion of Ω(t) can
be constructed explicitly and recursively by means of rooted trees with bi-
colour leaves.

Example 7.3. In analogy to Example 7.1, we could also consider the near-
est approximation by iso-singular-value matrices. Given a rectangular ma-
trix Σ of size m× n and a desirable structure P over R

m×n, all matrices on
the orbit OrbO(m)×O(n)(Λ) := {X = U⊤ΣV |U ∈ O(m), V ∈ O(n)} have the
same singular values as Σ. The objective functional F : O(m) ×O(n) → R

defined by

F (U, V ) := ‖U⊤ΣV − P (U⊤ΣV )‖2
F (7.11)

is meant to best approach the structure P while maintaining the singular
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values. A continuous transformation X := U⊤ΣV is governed by the dy-
namical system

dX

dt
=
{
X(X⊤P (X) − P (X)⊤X) − (XP (X)⊤ − P (X)X⊤)X

}
, (7.12)

which, at first glance, is not exactly in the double bracket form. However,
upon recasting the original action of equivalence U⊤ΣV by the product
group O(m) ×O(n) as a new action of conjugation,

[
U⊤ 0
0 V ⊤

] [
0 Σ

Σ⊤ 0

] [
U 0
0 V

]
,

by a subgroup of O(m+n), Tam (2004) has observed that (7.12) can indeed
be written in a double bracket form,

dX

dt
= [X, [X, P(X)]], (7.13)

with the definition

X :=

[
0 X

X⊤ 0

]
,

P(X) :=

[
0 P (X)

P (X)⊤ 0

]
.

Some applications of the gradient flow (7.12) include a sorting property
similar to Theorem 7.2 if P consists of a single constant matrix (Chu and
Driessel 1990, Smith 1991), structured inverse singular value problems, and
a Jacobi-type algorithm if P (X) = diag(X). In the last case, the corre-
sponding dynamical system is

dX

dt
=
{
X(X⊤ diag(X) − diag(X)⊤X) − (X diag(X)⊤ − diag(X)X⊤)X

}
.

It is interesting to note that by merely a change of sign in the above equation,
we obtain the system

dX

dt
=
{
X(X⊤ diag(X) − diag(X)⊤X) + (X diag(X)⊤ − diag(X)X⊤)X

}

= XX⊤ diag(X) − diag(X)X⊤X, (7.14)

which is precisely the SVD flow (6.2). Recall that the SVD flow was orig-
inally formulated with the intention to preserve the bidiagonal structure if
Σ is bidiagonal to begin with. The fact that the SVD flow can be expressed
differently as in (7.14) is interesting. At present, whether (7.14) is just an
algebraic coincidence or is a result of a deeper theory is not clear to us.

Example 7.4. Consider the classical matrix nearness problem of finding
the closest normal matrix to a given matrix A ∈ C

n×n (Higham 1989, Ruhe
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1987). This problem is equivalent to minimizing the functional

F (U) =
1

2
‖U∗AU − diag(U∗AU)‖2

F , (7.15)

subject to the constraint that U ∈ C
n×n is unitary. Once the minimizer Ũ of

(7.15) is found, the nearest normal matrix to A is given by Ũ diag(Ũ∗AŨ)Ũ∗.
The objective function (7.15) is similar to (7.9) except that we are dealing

with complex-valued matrices. A projected gradient flow,

dZ

dt
=

[
Z,

[Z, diag(Z∗)] − [Z, diag(Z∗)]∗

2

]
, (7.16)

for the complex matrix Z = U∗AU can be derived as the action of the
unitary group over C

n×n. One advantage of this differential equation ap-
proach is that many theoretical results concerning the nearest normal ma-
trix approximation which have been challenging to matrix theorists can be
obtained naturally from analysing the equilibrium point of the dynamical
system (Chu 1991, Ruhe 1987).

Example 7.5. We now illustrate how the ‘regulator’ of f in (7.4) comes
into play in some applications. Given two vectors a, λ ∈ R

n, the Schur–Horn
theorem states that there exists a Hermitian matrix H with eigenvalues
λ and diagonal entries a if and only if λ is majorized by a (Horn and
Johnson 1990). The harder part of this classical result is the inverse problem
of construct a symmetric matrix with prescribed diagonal entries a and
spectrum {λ1, . . . , λn}. We recast the inverse problem as the problem of
minimizing the functional

F (Q) :=
1

2
‖diag(Q⊤ΛQ) − diag(a)‖2

F , (7.17)

subject to Q ∈ O(n). Note that we have taken f(X) = diag(X) for the
isospectral matrices X := Q⊤ΛQ. It can be shown that the projected
gradient flow becomes a double bracket equation (Chu 1995):

dX

dt
= [X, [X, diag(a) − diag(X)]]. (7.18)

Stability analysis at the equilibrium yields an easy existence proof of the
Schur–Horn theorem.

We should re-emphasize that, unless special care is given to the discretiza-
tion and implementation, the differential equation approach generally is not
necessarily the most effective numerical means for solving problems. For the
Schur–Horn problem, a finite-step recursive algorithm is computationally
more efficient (Zha and Zhang 1995).
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7.4. Generalization beyond group actions

The primary purpose of employing group actions in linear transformations
is to keep eigenvalues or singular values invariant under the change of coor-
dinates. It sometimes becomes desirable to keep other properties invariant.
In many cases, the notion of gradient flows can be generalized to other
geometric entities that do not hold any group structure. Examples of appli-
cations include the Stiefel manifold for the orthonormal Procrustes problem,
or the more general Penrose regression problem (Chu and Trendafilov 2001),
the convex set of positive definite real symmetric matrices for the bal-
anced realization (Helmke, Moore and Perkins 1994), the Grassmann man-
ifold for the geometric optimization methods (Edelman et al. 1999), the
manifold of oblique matrices for the multi-dimensional scaling (Cox and
Cox 1994, Del Buono and Lopez 2002) or the data fitting on the unit sphere
(Chu, Del Buono, Lopez and Politi 2005), the cone of non-negative matrices
for inverse eigenvalue problem (Chu and Guo 1998, Orsi 2006), and so on.

We wrap up this section by demonstrating one of these generalizations.
At first glance, no group structure is involved in the formulation of the
dynamical system. We then modify the coordinate systems to bring in
group actions.

Example 7.6. The non-negative inverse eigenvalue problem concerns the
construction of a entry-wise non-negative matrix A ∈ R

n×n with a pre-
scribed set {λ1, . . . , λn} ⊂ C, closed under conjugation, as its spectrum.
This has been a classical but hard problem, long investigated by many ma-
trix theorists. The inadequacy of the current development is evidenced by
the fact that the necessary condition for solvability is usually too general,
while the sufficient condition is too specific (Chu and Golub 2005).

Recently it has been proved that, given an arbitrary (n − 1)-tuple

Ω = (λ2, . . . , λn) ∈ C
n−1,

whose components are closed under complex conjugation, there exists a
unique positive real number R(Ω), called the minimal realizable spectral
radius of Ω, such that the set {λ1, . . . , λn} is precisely the spectrum of a
certain n× n non-negative matrix with λ1 as its spectral radius if and only
if λ1 ≥ R(Ω). Employing any existing necessary conditions as a mode of
checking criteria, Chu and Xu (2005) have proposed a simple bisection pro-
cedure to approximate the location of R(Ω). As an immediate application,
it offers a quick numerical way to check whether a given n-tuple could be the
spectrum of a certain non-negative matrix. However, even after a potential
spectrum is identified as feasible, very few general numerical procedures are
available for the actual construction of non-negative matrices. Generalizing
the above ideas and taking the advantage of its easy formulation, a gradient
flow can come to serve this purpose (Chu and Guo 1998).
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Since the spectrum is closed under complex conjugation, we may assume
a real-valued matrix J to carry the prescribed spectrum. We cast the inverse
problem as a constrained minimization problem by working with two matrix
parameters (g, R),

minimize F (g, R) :=
1

2
‖gJg−1 − R ◦ R‖2

F ,

subject to g ∈ Gl(n), R ∈ gl(n),

where ◦ denotes the component-to-component Hadamard product. The idea
behind F (g, R) is similar to that in (7.4), except that this time we want to
minimize the distance between the orbit OrbGl (n)(J) and the cone of non-

negative matrices. The constraints literally do not exist because both Gl(n)
and gl(n) are open sets. No projection onto the constraints is needed. The
steepest descent flow for F (g, R) is given by straightforward calculation,

dg

dt
=
[
(gJg−1)⊤, α(g, R)

]
g−⊤, (7.19)

dR

dt
= 2α(g, R) ◦ R, (7.20)

with α(g, R) := gJg−1 − R ◦ R.

The requirement of computing g−1 in the gradient flow is worrisome.
We can diminish concern at the cost of re-parametrizing g by its ana-
lytic singular value decomposition (Bunse-Gerstner, Byers, Mehrmann and
Nichols 1991, Wright 1992). Suppose g(t) = X(t)S(t)Y (t)⊤ is the singular
value decomposition of g(t), where S(t) is a diagonal matrix with elements
from the multiplicative group R× of non-zero real numbers and X(t) and
Y (t) are elements from the orthogonal group O(n). From the relationship
of derivatives,

X⊤ dg

dt
Y = X⊤ dX

dt︸ ︷︷ ︸
Z

S +
dS

dt
+ S

dY ⊤

dt
Y

︸ ︷︷ ︸
W

, (7.21)

we can specify the dynamics of evolution for the parameters (X, S, Y ). In

particular, let Υ := X⊤ dg
dt Y , where dg

dt is given by (7.20). Given initial val-
ues (X(0), S(0), Y (0)), we see that the equation for S(t) is readily available,

dS

dt
= diag(Υ), (7.22)

whereas the two equations

dX

dt
= XZ, (7.23)

dY

dt
= Y W (7.24)
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can also be defined, since the skew-symmetric matrices Z and W can be re-
trieved from off-diagonal elements of Υ and S. In total, we have constructed
a gradient flow for the objective function F in terms of the four matrix pa-
rameters (X, S, Y, R) that evolve on the manifold O(n)×R

n
××O(n)×gl(n).

8. Structure-preserving dynamical systems

The notion of structure preservation has been put into practice in numer-
ical linear algebra since its very early stage of development. The upper
Hessenberg form has been used in the QR algorithm, the upper Hessen-
berg/triangular form in the QZ algorithm, and the bidiagonal form in the
SVD algorithm (Golub and Van Loan 1996), to mention a few. These struc-
tures are not only preserved throughout the iterative processes, but also play
a fundamental role in making the algorithms effective for computation.

Each of the three above-mentioned iterative schemes has a correspond-
ing continuous analogue. It is well known that the generalized Toda flow
preserves the tridiagonal form for symmetric matrices and the upper Hessen-
berg form for general matrices (Chu 1988, Watkins and Elsner 1988). The
QZ flow and the SVD flow, on the other hand, were designed specifically
to preserve the upper Hessenberg/triangular and the bidiagonal structures,
respectively. Recall that the Lotka–Volterra equation discussed extensively
in Section 6 is precisely the SVD flow applied to bidiagonal matrices.

As before, the meaning of structure should be interpreted broadly to in-
clude any invariant properties under the flow. The Toda flow, therefore,
preserves at least two structures: the spectrum and the upper Hessenberg
form. Likewise, the SVD flow preserves the singular values and the bidi-
agonal form. It then becomes interesting to ask whether there are other
structures invariant under these flows. To distinguish these special matrix
forms from other invariant properties to be discussed later, we shall use
the term zero structure to refer collectively to any specific zero pattern of
a matrix. The flip side of the question is equally interesting and perhaps
more important: Given a set of structures related to a fixed matrix, can
a dynamical system, continuous or discrete, be designed to preserve the
specified structures?

The importance of structure preservation goes far beyond the realm of
linear algebra alone. There are properties other than zero structures that
we want to maintain. Stability and passivity preservation, for example, are
highly desirable in model reduction (Antoulas 2005). Standard simplicity
preservation allows a doubling algorithm to effectively separate stable and
unstable eigenvalues when solving the discrete algebraic Riccati equation
(Lin and Xu 2006). See also an interesting discussion by Mackey et al.
(2003) for structured matrices arising in the context of a bilinear or sesqui-
linear form. A quick search for the key phrase ‘structure preserving’ over the
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internet brings up a wide range of applications across multiple disciplines.
We will not and are unable to review the various situations in the litera-
ture where structure preservation is essential. However, it might be safe to
state that structure preservation is essential in applications because it often
makes possible more efficient computation, improves physical feasibility or
interpretability, and is more robust.

In this section, we shall explore dynamical systems that preserve some
interesting structures arising from linear algebra. We intend to disclose
some of the structures that are elusive from consideration of the dynamical
systems. Be warned that we have to pose several observations as conjectures
because no mathematical proofs are available at present. Even so, numerical
experiments strongly suggest that these conjectures should be true.

8.1. Staircase structure

The upper Hessenberg form is actually a special case of the more general
form known as the staircase structure. Given a matrix A = [aij ] ∈ R

m×n,
define the step index for each column by

tk(A) := max
{

k, max
k<i≤m

{
i|aik �= 0

}}
, k = 1, . . . , n. (8.1)

We say that A is in staircase form if and only if

tk(A) ≤ tk+1(A), k = 1, . . . , n − 1. (8.2)

Both of the following matrices, for example,



× × × × ×

0 × × × ×

0 × 0 × ×

0 0 × × ×

0 0 0 0 ×




,




× × × × ×

0 × × × ×

0 × × × ×

0 0 × × ×

0 0 0 0 ×




︸ ︷︷ ︸
full staircase

are staircase matrices with step indices {1, 3, 4, 4, 5}. When there are no
zero elements above the stairs, we say that the matrix is of full staircase.

Recall that the QR algorithm is the most efficient method for eigenvalue
computation due to its stability and isospectrality. The following result
by Arbenz and Golub (1995) identifies the zero structure that is preserved
under the QR algorithm when applied to symmetric matrices.

Theorem 8.1. Assume that A0 is symmetric. Let {Ak} be the iterates
generated by the QR algorithm (5.2). Then the following are true.
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(1) If A0 is reducible by some permutation matrix P , that is,

PA0P
⊤ =

[
A01 A02

0 A03

]
,

then each Ak is also reducible by means of the same permutation P .

(2) If A0 is irreducible, then the zero pattern of A0 is preserved throughout
{Ak} if and only if A0 is a full staircase matrix.

Consider the zero structure of the following two 7×7 symmetric matrices,




× 0 × 0 × 0 ×

0 × 0 × 0 × 0

× 0 × 0 × 0 ×

0 × 0 × 0 × 0

× 0 × 0 × 0 ×

0 × 0 × 0 × 0

× 0 × 0 × 0 ×




,




× 0 × 0 × × ×
0 × 0 × 0 × 0

× 0 × 0 × 0 ×

0 × 0 × 0 × 0

× 0 × 0 × 0 ×

× × 0 × 0 × 0

× 0 × 0 × 0 ×




, (8.3)

which differ only at the (1, 6) and (6, 1) positions. The QR algorithm using
these two matrices as the initial values produces very different behaviour.
Theorem 8.1 asserts that the zero pattern for the left matrix is preserved
because it is reducible, but the zero pattern for the right matrix is totally
destroyed even after one iteration.

For non-symmetric matrices, the reducibility is not guaranteed to be pre-
served. However, the staircase form remains a sufficient, but not neces-
sary, condition for shape preservation under the QR algorithm. Given the
close relationship between the QR algorithm and the Toda flow, it should
not be surprising that if X0 is a staircase matrix, then so is X(t) under
the dynamical system (5.14) (Ashlock, Driessel and Hentzel 1997, Chu and
Norris 1988).

For the generalized eigenvalue problem,

A0x = λB0x, (8.4)

a typical iterative scheme is the QZ algorithm. For practical purposes, the
matrix A0 is usually first reduced to an upper Hessenberg form and B0 to
an upper triangular form by orthogonal equivalence transformations. The
basic idea behind the QZ algorithm is to simulate the effect of the QR algo-
rithm on the matrix B−1

0 A0 (assuming B0 is invertible) without explicitly
forming the inverse or the product. Throughout the QZ iteration, a crit-
ical component in the algorithm is that the upper Hessenberg/triangular
structure is preserved.
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Suppose now that a smooth orthogonal equivalence transformation has
been applied to the pencil B0λ − A0,

L (t) = Q(t)(B0λ − A0)Z(t), Q(t), Z(t) ∈ O(n). (8.5)

Upon differentiation, the isospectral flow L (t) is necessarily governed by a
differential system of the form

dL

dt
= L R − LL , L (0) = B0λ − A0, (8.6)

where the coordinate transformation must satisfy the system

dQ

dt
= −LQ,

dZ

dt
= ZR,

with some L, R ∈ o(n). The choice of skew-symmetric matrix parameters
L(t) and R(t) determines the dynamics. Write

X(t) = Q(t)A0Z(t),

Y (t) = Q(t)B0Z(t).

To mimic the QZ algorithm, we prefer to choose L(t) and R(t) so that
the resulting vector fields dX

dt and dY
dt remain upper Hessenberg/triangular

whenever X(t) and Y (t) are, respectively. Among many possibilities, one
selection out of näıveté but with proper symmetry is the choice

L = Π0(XY −1), (8.7)

R = Π0(Y
−1X), (8.8)

where the operator Π0 is given in (5.13). Define the QZ flow accordingly by

dL

dt
= L Π0(Y

−1X) − Π0(XY −1)L , L (0) = B0λ − A0. (8.9)

Note that if X(t) and Y (t) are upper Hessenberg/triangular, then both L(t)
and R(t) are tridiagonal. Note also that if we define

E(t) := X(t)Y −1(t), (8.10)

F (t) := Y −1(t)X(t), (8.11)

then it can readily be proved that

dE

dt
= [E, Π0(E)], (8.12)

dF

dt
= [F, Π0(F )]. (8.13)

In other words, the QZ flow (8.9) is related to the QZ algorithm in the same
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way as the Toda flow is related to the QR algorithm. The convergence of
the QZ flow therefore follows naturally from the dynamics of the Toda flow
(Chu 1986a).

Thus far, the peculiar right-hand sides of (8.9) are designed solely for the
purpose of maintaining the upper Hessenberg/triangular form. However,
one interesting phenomenon as a by-product is worth mentioning. It has
been observed that the QZ flow and, consequently, the corresponding QZ
algorithm preserve the staircase structure. A more precise description of
our empirical observation is given in the following conjecture, of which a
rigorous proof has not been established at present.

Conjecture 8.2. If both A0 and B0 are staircase matrices, not necessarily
of the same pattern, then the structures of A0 and B0 are preserved by X(t)
and Y (t) under the QZ flow defined by (8.9), respectively.

We elaborate on the implication of Conjecture 8.2 a little bit more. The
distinct zero patterns of the two matrices,

A0 =




× × × × × × ×

× × × × × × ×

0 × × × × × ×

0 × × × × × ×

0 0 0 × × × ×

0 0 0 × × × ×

0 0 0 0 0 0 ×




, B0 =




× × × × × × ×

× × × × × × ×

× × × × × × ×

× × × × × × ×

0 0 0 × × × ×

0 0 0 0 × × ×

0 0 0 0 0 × ×




,

for example, are preserved, respectively, in the QZ flow. It is not obvious
why the separate stair structures are kept without interference. It is amazing
that the procedure of ‘mixing’ Y −1, which is usually full and dense with
the structured X followed by the operations in the way specified in (8.9),
will eventually separate and give back the original staircase structures of
X and Y , respectively. Direct manipulation is hard to come by, because
algebraic expression would be considerably complicated. Perhaps it is for
this reason that the staircase structure has been reticent thus far. Although
not necessarily of practical value, such a structure-preserving property of
the QZ flow (and of the QZ algorithm) is mathematically intriguing.

An equally interesting structure-preserving property is also found in the
SVD flow (6.2). Our original idea in deriving this particular matrix form
of dynamical system was simply to maintain the bidiagonal structure (Chu
1986b). Because of this property, the SVD flow is reduced to the Lotka–
Volterra equation (6.3) when B0 is bidiagonal to begin with. Surprisingly,
if we continue to use the SVD flow in its matrix form (6.2), then we have
empirical evidence to support the following conjecture.
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Conjecture 8.3. Suppose B0 is a staircase matrix. Then the SVD flow
B(t) defined by (6.2) and the corresponding SVD algorithm maintains the
same staircase structure.

For small size matrices, the validity of Conjecture 8.3 can be proved by
an ad hoc calculation. We are curious whether there is a more elegant way
to validate this conjecture in general.

Finally, we remark that the staircase form is only a sufficient condition for
shape preservation under the SVD flow. There are other structures invariant
under the dynamical system (6.2). The chessboard structure of the left
matrix in (8.3), for example, is preserved under the SVD flow, but unlike
the symmetric QR flow, the SVD flow does not preserve the reducibility.

8.2. Lancaster structure

The Lancaster structure of three given matrices M0, C0 and K0 in R
n×n

refers to a linear pencil of the form (Gohberg, Lancaster and Rodman 1982)

L(λ) := L(λ; M0, C0, K0) =

[
C0 M0

M0 0

]
λ −

[
−K0 0

0 M0

]
. (8.14)

The matrices need not have any additional properties such as symmetry or
positive definiteness. The Lancaster structure consists of more than just
zero patterns. It also requires the matrix M0 to appear at three specified
locations. It is easy to see that the linear pencil (8.14) is equivalent to the
quadratic pencil,

Q(λ) := Q(λ; M0, C0, K0) = λ2M0 + λC0 + K0, (8.15)

in the sense that
([

C0 M0

M0 0

]
λ −

[
−K0 0

0 M0

])[
u

v

]
= 0 (8.16)

if and only if {
(λC0 + K0)u + λM0v = 0,

λM0u − M0v = 0.
(8.17)

Indeed, if M0 is non-singular, then we know further that v = λu. Obviously,
the Lancaster structure implies that if Q(λ) is self-adjoint, then so is L(λ).
The eigen-information (λ,u) ∈ C×C

n of the quadratic pencil Q(λ) is critical
to the understanding of the dynamical system

M0ẍ + C0ẋ + K0x = f(t), (8.18)

which arises frequently in many important applications, including applied
mechanics, electrical oscillations, vibro-acoustics, fluid mechanics, and sig-
nal processing (Tisseur and Meerbergen 2001).
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We are interested in the Lancaster structure because, in contrast to the
common knowledge that generally no three matrices can be diagonalized
simultaneously by equivalence transformations, it has been shown that for
almost all quadratic pencils there exist real-valued 2n× 2n real matrices Πℓ

and Πr such that

Π⊤
ℓ L(λ)Πr = L(λ; MD, CD, KD), (8.19)

where MD, CD, KD are all real-valued n × n diagonal matrices. In other
words, almost all n-degree-of-freedom second-order systems can be reduced
to n totally independent single-degree-of-freedom second-order subsystems
by real-valued isospectral transformations (Chu and Del Buono 2008a, Gar-
vey, Friswell and Prells 2002a, 2002b). Such an isospectral transformation
is significant in that it links the dynamical behaviour of a multiple-degree-
of-freedom system directly to that of a system consisting of n independent
single-degree-of-freedom subsystems. It breaks down the interlocking con-
nectivity in the original system into totally disconnected subsystems while
preserving the entire spectral properties. Thus it will be of great value in
practice if the transformations Πℓ and Πr can be found from any given pen-
cil. We may consider (8.19) as a special kind of canonical form for the linear
pencil (8.14).

The current theory of existence expresses Πℓ and Πr in terms of the
complete spectral information of L(λ). The need for spectral information
in the construction of Πℓ and Πr is certainly not practical. Employing the
notion of structure-preserving isospectral flows, it is possible to construct
Πℓ and Πr numerically without knowing the spectral information.

We first explore the ‘orbit’ of L(Λ) under (Lancaster) structure-preserving
equivalence transformations. Denote

Πℓ =

[
ℓ11 ℓ12

ℓ21 ℓ22

]
, Πr =

[
r11 r12

r21 r22

]
, (8.20)

where each ℓij or rij is an n×n matrix. In order to maintain the Lancaster
structure in the transformation Π⊤

ℓ L(Λ)Πr, it is necessary that the following
five equations hold:

−ℓ⊤11K0r12 + ℓ⊤21M0r22 = 0,

−ℓ⊤12K0r11 + ℓ⊤22M0r21 = 0,

ℓ⊤12C0r12 + ℓ⊤22M0r12 + ℓ⊤12M0r22 = 0, (8.21)

ℓ⊤11C0r12 + ℓ⊤21M0r12 + ℓ⊤11M0r22 = ℓ⊤12C0r11 + ℓ⊤22M0r11 + ℓ⊤12M0r21

= −ℓ⊤12K0r12 + ℓ⊤22M0r22.

Ultimately, in order to produce the canonical form, the matrices Πℓ and Πr
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must be such that the left-hand sides of the following three expressions,

−ℓ⊤12K0r12 + ℓ⊤22M0r22 = MD,

ℓ⊤11C0r11 + ℓ⊤21M0r11 + ℓ⊤11M0r21 = CD, (8.22)

ℓ⊤11K0r11 − ℓ⊤21M0r21 = KD,

are diagonal matrices. The conditions (8.21) and (8.22) together constitute
a homogeneous second-degree polynomial system of 8n2 − 3n equations in
8n2 unknowns. It is not obvious how the nonlinear algebraic system could
be solved analytically, but the underdetermined system does imply that
there is plenty of room to choose the transformation matrices Πℓ and Πr.
In particular, a smooth path connecting (M0, C0, K0) to (MD, CD, KD) can
be defined.

To characterize the path, denote the Lancaster pair in (8.14) by (A0, B0),
where

A0 =

[
−K0 0

0 M0

]
, B0 =

[
C0 M0

M0 0

]
. (8.23)

We now develop two one-parameter families Tℓ(t) and Tr(t) in R
2n×2n of

structure-preserving transformations starting with Tℓ(0) = Tr(0) = I2n.
Assume that these families of transformations act on (A0, B0) via the form

A(t) = T⊤
ℓ (t)A0Tr(t),

B(t) = T⊤
ℓ (t)B0Tr(t),

respectively. Clearly, regardless of how Tℓ(t) and TR(t) are defined, the
transformed pencil (A(t), B(t)) is isospectral to (A0, B0) for any t. For
simplicity, we limit ourselves to a special class of transformations where
matrices Tℓ(t) and Tr(t) are governed by the dynamical systems

dTℓ(t)

dt
= Tℓ(t)L(t) = Tℓ(t)

[
L11(t) L12(t)

L21(t) L22(t)

]
, (8.24)

dTr(t)

dt
= Tr(t)R(t) = Tr(t)

[
R11(t) R12(t)

R21(t) R22(t)

]
, (8.25)

respectively, where each Lij(t) or Rij(t), i, j = 1, 2, is a n × n real one-
parameter matrix yet to be defined. Upon substitution, we observe that the
pencil

L (t) = B(t)λ − A(t)

must satisfy the equation

dL

dt
= L⊤

L + LR, L (0) = L(λ).

It is interesting to note that these differential equations are similar to those
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discussed by Bloch and Iserles (2006), which led to a Lie–Poisson system.
By insisting that (A(t), B(t)) maintains the Lancaster structure throughout
the transformation, that is,

A(t) =

[
K(t) 0

0 −M(t)

]
, B(t) =

[
C(t) M(t)

M(t) 0

]
, (8.26)

we see that the entries of L(t) and R(t) should satisfy

R12 = −DM, (8.27)

R21 = DK, (8.28)

L12 = D⊤M⊤, (8.29)

L21 = −D⊤K⊤, (8.30)

L11 − L22 = D⊤C⊤, (8.31)

R11 − R22 = −DC, (8.32)

where D ∈ R
n×n is an arbitrary matrix parameter. Note that hidden in

(8.31) and (8.32) are two other free matrix parameters denoted by NL and
NR, respectively.

There are several possible ways to choose the parameters and to ar-
range the diagonal blocks of L(t) and R(t). For instance, corresponding
to the choice

L =

[
D⊤ 0

0 D⊤

] [ C⊤

2 M⊤

−K⊤ −C⊤

2

]
+

[
N⊤

L 0

0 N⊤
L

]
, (8.33)

R =

[
D 0

0 D

][
−C

2 −M

K C
2

]
+

[
NR 0

0 NR

]
, (8.34)

an isospectral flow of the triplet (M(t), C(t), K(t)) can be defined by the
autonomous system

dK

dt
=

1

2
(CDK − KDC) + N⊤

L K + KNR,

dC

dt
= (MDK − KDM) + N⊤

L C + CNR, (8.35)

dM

dt
=

1

2
(MDC − CDM) + N⊤

L M + MNR.

Furthermore, by assuming NR(t) = NL(t), the symmetry retained in the
matrix parameter D has the effect of preserving the symmetry for the flow
(M(t), K(t), C(t)) defined by the dynamical system (8.35). The various
symmetry-preserving properties are summarized in Table 8.1.

The remaining task is to ‘control’ the free matrix parameters in such a way
that the structure-preserving isospectral flow (A(t), B(t)) converges to the
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Table 8.1. Preserving symmetry of (M(t), C(t),K(t)) by D(t),
if NR(t) = NL(t).

D(t) M(t) C(t) K(t)

skew-symmetric symmetric symmetric symmetric
symmetric symmetric skew-symmetric symmetric
symmetric skew-symmetric skew-symmetric skew-symmetric

skew-symmetric skew-symmetric symmetric skew-symmetric

canonical form (8.19). Consider the idea of minimizing a given sufficiently
smooth objection function f : R

n → R whose state variable x ∈ R
n is

constrained to the integral curve of

dx

dt
= g(x)u, x(0) = x0, (8.36)

where g : R
n −→ R

m is a fixed function and u(t) ∈ R
m is the control.

For minimization, one way to choose the control u is to make the vector ẋ
as close to −∇f(x) as possible. This amounts to the selection of the least
squares solution u defined by

u(t) = −g(x(t))†∇f(x(t)), (8.37)

where g(x)† stands for the Moore–Penrose generalized inverse of g(x). It
follows that the closed-loop1 dynamical system,

dx

dt
= −g(x)g(x)†∇f(x), (8.38)

defines a descent flow x(t) for the objective function f(x).
For our application, we wish the structure-preserving isospectral flow

(M(t), C(t), K(t)) to be driven to diagonal matrices. However, unlike the
isospectral flow by orthogonal transformations, our flow (M(t), C(t), K(t))
preserves only the Lancaster structure but not the norm. Thus, we seek
matrix parameters NR, NL and D to minimize the function

f(K, C, M) :=
1

2

{
‖offdiag(M)‖2

F + ‖offdiag(C)‖2
F + ‖offdiag(K)‖2

F

}

+ δh(diag(M), diag(C), diag(K)), (8.39)

subject to the condition that (M, C, K) is governed by the differential system
(8.35). The crux of choosing this particular objective function is to minimize

1 The system (8.36) is ‘closed-loop’ in the sense that it is now self-contained: the reference
to u is no longer needed directly.
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the off-diagonal entries of (M, C, K) while using the function h to regulate
the behaviour of the diagonal entries by a factor of δ. Note that we may
rewrite the dynamical system (8.35) in the same control scheme,

d

dt



vec(M)

vec(C)

vec(K)


 =




1
2(K ⊗ C − C ⊗ K) K ⊗ I I ⊗ K

K ⊗ M − M ⊗ K C ⊗ I I ⊗ C
1
2(C ⊗ M − M ⊗ C) M ⊗ I I ⊗ M






vec(D)

vec(N⊤
L )

vec(NR)


,

as that of (8.36). The above-mentioned control strategy fits perfectly. In this
way, we have developed a ‘controlled’ gradient flow which not only preserves
both the Lancaster structure and the isospectrality, but also moves in the
direction of total decoupling of a quadratic pencil. More detailed discussion
can be found in Chu and Del Buono (2008b).

8.3. Hamiltonian structure

A matrix H ∈ R
2n×2n is said to be Hamiltonian if it satisfies the relationship

(HJ)⊤ = HJ , where

J :=

[
0 In

−In 0

]
.

It is easy to see that a Hamiltonian matrix must have the structure

H =

[
M P
Q −M⊤

]
, P and Q are symmetric. (8.40)

Likewise, a skew-Hamiltonian matrix W satisfies (WJ)⊤ = −WJ , and has
the structure

W =

[
M F
G M⊤

]
, F and G are skew-symmetric. (8.41)

Without causing ambiguity, we shall refer to a form of either (8.40) or (8.41)
collectively as a Hamiltonian structure. We shall call up the more specific
reference to a Hamiltonian matrix or a skew-Hamiltonian matrix only when
a clear distinction is necessary. The notation H and W, specifically reserved
for the Hamiltonian matrix and the skew-Hamiltonian matrix, respectively,
should offer a clue as to which structure we are referring to in the context.

Matrices with Hamiltonian structure arise from a variety of applications,
including systems and controls, algebraic Riccati equations, and quadratic
eigenvalue problems (Benner, Kressner and Mehrmann 2005). Inherent in
the Hamiltonian structure are many interesting properties. For example, the
eigenvalues of H are symmetric with respect to the imaginary axis, and the
eigenvalues of W have even algebraic and geometric multiplicities. These
properties are often tied to the physical settings that lead to the underlying
structure. For feasibility and interpretability, therefore, any transformation
of H or W should respect the original Hamiltonian structure. Because
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conventional algorithms usually fail to meet this requirement, there has
been considerable research effort to derive special methods for matrices with
Hamiltonian structure. Some principal references will be given in the course
of our presentation. Needless to say, special methods mean more delicate
manipulations. The description of these methods are usually quite involved.

In this section, we are mainly interested in deriving continuous dynamical
systems that mimic existing iterative schemes. In contrast to the iterative
methods, most of our Hamiltonian structure-preserving dynamical systems
can be characterized as a single line equation. Nonetheless, despite the fact
that our extensive numerical experiments have given convincing evidence for
the resulting dynamical behaviour, a major drawback in our current work
is the lack of a complete asymptotic analysis of these differential systems.
We have to leave these gaps as conjectures in this presentation.

To maintain the Hamiltonian structure, it is typical in practice that a
similarity transformation of H or W should involve only symplectic matrices
S ∈ R

2n×2n. A symplectic matrix S must satisfy the condition

S⊤JS = J, (8.42)

which naturally implies the symmetry SJS⊤ = J as well. Recall that we
mentioned earlier in Table 7.1 that symplectic matrices form a group Sp(2n).
For numerical stability, it is often further required that the transformation
matrix S be orthogonal symplectic.

The following three facts, leading to the particular structure called the
real Schur–Hamiltonian form in the first two cases and the URV form in
the third case, play fundamental roles in the computation of eigenvalues for
matrices with Hamiltonian structure.

Theorem 8.4. Given H,W ∈ R
2n×2n which are Hamiltonian and skew-

Hamiltonian matrices, respectively, then we have the following.

(1) (Paige and Van Loan 1981) If H has no purely imaginary eigenvalues,
then there exists an orthogonal symplectic matrix U ∈ R

2n×2n such
that H̃ = U⊤HU is Hamiltonian and is of the form

H̃ =

[
R P
0 −R⊤

]
, (8.43)

where P is symmetric and R is upper quasi-triangular.

(2) (Van Loan 1984) There exists an orthogonal symplectic matrix U ∈

R
2n×2n such that W̃ = U⊤WU is skew-Hamiltonian, and is of the

form

W̃ =

[
R F
0 R⊤

]
, (8.44)

where F is skew-symmetric and R is upper quasi-triangular.
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(3) (Benner et al. 2005) There exist orthogonal symplectic matrices U, V ∈

R
2n×2n such that Ĥ = U⊤HV is of the form

Ĥ =

[
T N

0 R⊤

]
, (8.45)

where N has no particular structure, T is upper triangular and R is
upper quasi-triangular.

Evidently, being able to reduce a matrix of Hamiltonian structure to its
Schur–Hamiltonian form is sufficient for retrieving eigenvalue information.
Most existing numerical methods for eigenvalue problems with Hamiltonian
structure consist of two steps: first, endeavour to obtain the reduced form
and, secondly, employ some classical iterative schemes to solve the reduced
eigenproblem.

Currently, stable procedures for computing eigenvalues of skew-Hamil-
tonian matrices are well developed (Benner et al. 2005, Van Loan 1984).
For Hamiltonian matrices, the task is much harder. The prevailing idea is
to square a Hamiltonian H due to the fact that H2 is skew-Hamiltonian.
Indeed, by (8.45), we see that H2 can be factorized as

U⊤H2U =

[
−TR TN⊤ − NT⊤

0 −R⊤T⊤

]
, (8.46)

showing that the eigenvalues of H are the square roots of the eigenvalues
from the matrix −TR. The 2n × 2n eigenvalue problem is therefore effec-
tively halved. A QZ -type algorithm can be applied to find the eigenvalues
of the product TR without explicitly forming the product. Implementation
details can be found in the paper by Benner and Kressner (2006). A sim-
ilar idea but with improved invariant subspace computation is explored in
Chu, Liu and Mehrmann (2007). We shall present in the following an in-
teresting contrast that a continuous approach is easier to formulate for the
Hamiltonian eigenproblem than for the skew-Hamiltonian eigenproblem.

In a spirit similar to that of the QR, the QZ or the SVD algorithms,
we are interested in deriving dynamical systems that can realize the Schur–
Hamiltonian form or its like. Towards that end, we need to understand how
a smooth curve S(t) moves on the manifold of symplectic group Sp(2n).
It suffices to know that the tangent space g = TI2n

Sp(2n) for Sp(2n) at
the identity is simply the collection of Hamiltonian matrices. The tangent
vectors of S(t) must be given by

dS

dt
= SK, (or KS), (8.47)

where K is Hamiltonian. If the symplectic S(t) is also orthogonal, then the
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Hamiltonian matrix K must be of the special form

K =

[
M −Q

Q M

]
, (8.48)

where M is skew-symmetric and Q is symmetric.
We demonstrate a simple application of (8.48) to the Hamiltonian eigen-

problem. Given a matrix H0 ∈ R
2n×2n, consider a special kind of Lax

dynamical system described in (5.4),

dX

dt
= [X,P0(X)], X(0) = H0, (8.49)

where the operator P0 acting on X is defined to be the skew-symmetric
matrix,

P0(X) :=

[
0 −X⊤

21

X21 0

]
, (8.50)

if X is partitioned into four blocks of size n × n,

X =

[
X11 X12

X21 X22

]
.

Following (5.6), define the parameter dynamical system

dg

dt
= gP0(X), g(0) = I2n. (8.51)

Note that if P0(X) is Hamiltonian, then g(t) is automatically orthogonal
symplectic. In particular, if H0 is Hamiltonian to begin with, then we know
by Theorem 5.1 that X(t) = g⊤(t)H0g(t) remains Hamiltonian for all t.
Under some mild conditions, it can be proved that X(t) converges to an
upper block triangular form, that is, X21(t) −→ 0 as t −→ ∞ (Chu and
Norris 1988). Though the limit point of the isospectral flow (8.49) is not
exactly of the Schur–Hamiltonian form, it suffices to halve the Hamiltonian
eigenproblem. The flow approach is remarkably simple, given that in the
literature the Hamiltonian eigenproblem is known to be notoriously hard to
solve by iterative methods.

Unfortunately, the corresponding P0(X) is not Hamiltonian if X is skew-
Hamiltonian. The simple dynamical system (8.49) therefore cannot preserve
the skew-Hamiltonian structure. Since the skew-Hamiltonian eigenproblem
is supposed to be relatively easier to handle than the Hamiltonian eigen-
problem by iterative methods, it becomes interesting to ask whether the
Schur–Hamiltonian form of a skew-Hamiltonian matrix W0 can ever be re-
alized continuously. We offer a partial answer that looks pleasingly neat in
theory, but is probably of little use in practice.

It is known that every real skew-Hamiltonian matrix has a real Hamilto-
nian square root (Faßbender, Mackey, Mackey and Xu 1999). Thus, given
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a skew-Hamiltonian matrix W0, if we define H0 to be its real Hamiltonian
square root and define X(t) according to (8.49), then the corresponding
W(t) = X2(t) is skew-Hamiltonian and will converge to an upper block tri-
angular form. In particular, the very same parameter g(t) defined in (8.51)
(in terms of the Hamiltonian square root X(t)) serves as the continuous co-
ordinate transformation for W(t) = g⊤(t)W0g(t) and leads to convergence.
It is not difficult to verify that symbolically we can write the motion of W(t)
via the dynamical system

dW

dt
= [W,P0(W

1/2)], W(0) = W0, (8.52)

where W1/2 represents the real Hamiltonian square root of W. We hasten
to point out that caution must be taken in the above expression because a
skew-Hamiltonian matrix W has infinitely many Hamiltonian square roots
(Faßbender et al. 1999).

In the Lax dynamical system (5.14), the operation Π0(X) provides the
magic of convergence to the real Schur form for a general square matrix
X0. We seek a similar dynamical system that converges to the real Schur–
Hamiltonian for a Hamiltonian matrix H0. The operator P1 applied to a
Hamiltonian matrix X via the definition

P1(X) :=

[
Π0(X11) −X21

X21 Π0(X11)

]
(8.53)

appears to be a compromise between the overall Π0(X) required by the
QR flow for reaching sensible convergence and the form (8.48) required by
the orthogonal symplecticity for keeping the Hamiltonian structure. The
two operators Π0 and P1 for a Hamiltonian matrix X differ only in the
(2, 2)-block. We propose the dynamical system

dH

dt
= [H,P1(H)], H(0) = H0, (8.54)

for finding the real Schur–Hamiltonian form of a Hamiltonian matrix H0.
The following conjecture characterizes the convergence behaviour we have
observed numerically, but we cannot offer a theoretical proof for the present.

Conjecture 8.5. Suppose H0 is Hamiltonian with no purely imaginary
eigenvalues. Then the solution flow H(t) of (8.54) remains Hamiltonian and
converges to the real Schur–Hamiltonian form as is specified in (8.43).

If the square root is interpreted in the same way as in (8.52), then a
similar conjecture can be made for the system

dW

dt
= [W,P1(W

1/2)], W(0) = W0. (8.55)
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The solution flow W(t) preserves the skew-Hamiltonian structure of an ini-
tial matrix W0 and converges to the real Schur skew-Hamiltonian form as
is characterized in (8.44).

Regarding the URV decomposition, it is necessary that a flow X(t) =
U⊤(t)X0V (t) satisfies a differential equation of the form

dX

dt
= XR − LX, X(0) = X0, (8.56)

where the coordinate transformations are governed by

dU

dt
= −UL⊤, (8.57)

dV

dt
= V R, (8.58)

with L and R to be determined. The setting thus far is very similar to that
of the SVD flow. Let the operator P3 denote a generalization of P0 in that
the partition of X is not necessarily at the midpoint of its diagonal. In
particular, the off-diagonal block X21 can be of size (2n−k)×k with k ≤ n.
Consider the dynamical system

dX

dt
= XP3(X

⊤X) − P3(XX⊤)X, X(0) = X0, (8.59)

for a general 2n × 2n matrix X0, Note that (8.59) is analogous to the SVD
flow (6.2) except that P3 is used in the place of Π0. Clearly, X(t) main-
tains the same singular values as X0. Numerical experiments support the
following conjecture, which seems new and interesting.

Conjecture 8.6. Given a general 2n×2n matrix X0 with distinct singular
values and an integer k ≤ n, the solution flow X(t) of (8.59) converges to a

block diagonal matrix diag{X̂11, X̂22} of size k × k and (2n− k)× (2n− k),

respectively. Furthermore, the singular values of X̂11 are the first k largest
singular values of X0.

The coordinate transformations involved in Conjecture 8.6 are orthogonal
similarity at most. To really achieve the URV decomposition specified in
Theorem 8.4 part (3) for a Hamiltonian matrix H0, we have to employ
orthogonal symplectic transformations. The clue comes at recognizing from
(8.46) that the U transformation that does the URV decomposition for H0

should be the same U transformation that does the real Schur–Hamiltonian
form for H0. That is, by Conjecture 8.5, L = P1(U

⊤H0U). Similarly, the
V matrix in the URV decomposition should be the same V matrix that
transforms H⊤

0 to lower quasi-triangular Schur–Hamiltonian form. That is,
by defining the operator

P2(X) :=

[
−Π0(X

⊤
11) X12

−X12 −Π0(X
⊤
11)

]
(8.60)
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for a given Hamiltonian matrix X, we take R = P2(V
⊤H⊤

0 V ). We are
interested in a URV flow X(t) = U⊤(t)H0V (t). From the relations

U⊤H2
0U = XJX⊤J,

V ⊤H2
0V = X⊤JXJ,

we can express the URV flow symbolically through the autonomous dynam-
ical system

dX

dt
= XP2((X

⊤JXJ)1/2) − P1((XJX⊤J)1/2)X, X(0) = H0, (8.61)

where again W1/2 represents a proper real Hamiltonian square root of the
skew-Hamiltonian matrix W.

Hamiltonian structure-preserving differential systems like (8.49), (8.54),
or even (8.61) might not be practically useful right away, but they neatly
represent complicated dynamics that otherwise will be quite tedious, if not
formidable, to describe by iterative procedures. Maybe, and only maybe,
these flows could be suitably discretized and lead to effective numerical
algorithms. One precedent is the realization of the vdLV algorithm for
the Lotka–Volterra equation which, when first proposed two decades ago,
was regarded as ‘impractical’ as well. These flows might be worth further
investigation.

8.4. Hamiltonian pencils

We have already seen linear pencils with the Lancaster structure resulting
from a special linearization of a quadratic pencil. There are also linear
pencils with the Hamiltonian structure. To start off, two different definitions
in the literature must be carefully differentiated from each other. First, a
linear pencil Bλ − A is said to be Hamiltonian if and only if

BJA⊤ = −AJB⊤. (8.62)

This definition is equivalent to saying that the product B−1A is Hamil-
tonian, provided B−1 exists (Lin, Mehrmann and Xu 1999). If λ is an
eigenvalue of a Hamiltonian pencil, then so are −λ, λ,−λ. Secondly, a lin-
ear pencil Bλ−A is said to be skew-Hamiltonian/Hamiltonian (sHH) if and
only if B is skew-Hamiltonian and A is Hamiltonian (Mehl 1999). Pencils
with the sHH structure appear in gyroscopic systems, structural mechan-
ics, linear response theory, quadratic optimal control problems and many
other applications (Benner, Byers, Mehrmann and Xu 2002, Mehrmann
and Watkins 2000). Although it is a natural generalization in mathematics,
we have rarely seen Hamiltonian/Hamiltonian (HH) pencils in applications.
One indicator that an HH pencil is probably too general to deserve any
special attention is the fact that the HH structure does not generally carry
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any additional symmetric properties in its spectrum. We note, for example,
that any self-adjoint quadratic pencil (8.15) can be linearized as the pencil

[
M0 0
−C0 −M0

]
λ −

[
0 M0

K0 0

]
, (8.63)

which is equivalent to the Lancaster pair (8.14), is of the HH structure, and
can literally have arbitrary eigenvalues.

In analogy to (8.5), the one-parameter isospectral flow

L (t) = Q(t)
(
B0λ − A0

)
Z(t)

should satisfy a differential equation of the form

dL

dt
= L R − LL , L (0) = B0λ − A0, (8.64)

where the coordinate transformations are governed by

dQ

dt
= −LQ, (8.65)

dZ

dt
= ZR. (8.66)

with L and R to be determined. So far, this setting is similar to the QZ flow
except that the definition of the two matrices L and R needs to be further
specified. The conventional condition that L and R be skew-symmetric so
that Q(t) and Z(t) are orthogonal is certainly assumed in all cases, but we
are more interested in specifying conditions on L and R so as to maintain
the Hamiltonian structure. Besides, we are further interested in using L and
R to establish limiting behaviour of L (t) that might be of some practical
usages. We outline some general ideas below.

We first consider the sHH pencils. Suppose that L (0) = W0λ −H0 is of
the sHH structure to begin with. Write

L (t) = W(t)λ −H(t).

In order that L (t) maintains the sHH structure for all t, it is necessary that
WR − LW and HR − LH remain skew-Hamiltonian and Hamiltonian, re-
spectively. A straightforward algebraic manipulation shows that a sufficient
condition for this to happen is that

L = JR⊤J. (8.67)

Consequently, Q(t) and Z(t) can be interchanged via the relationship

Z(t) = JQ⊤(t)J, (8.68)

Q(t) = JZ⊤(t)J. (8.69)

Only one coordinate transformation of either (8.65) or (8.66) is needed for
the isospectral flow of an sHH pencil.
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For any given 2n × 2n matrix X, define a new operator P4 by

P4(X) :=

[
Π0(X11) −X⊤

21

X21 −Π0(X
⊤
22)

]
. (8.70)

Observe that P4(X) is almost identical to Π0(X) except for a ‘twist’ at the
(2, 2) block. Take the definitions

R := P4(W
−1H), (8.71)

L := P4(HW−1). (8.72)

It is easy to see that the relationship

HW−1 = J(W−1H)⊤J (8.73)

holds for every sHH pencil. A direct substitution then shows that the suf-
ficient condition (8.67) is satisfied. In this way, we find that the dynamical
system

dL

dt
= LP4(W

−1H) − P4(HW−1)L , L (0) = B0λ − A0, (8.74)

defines an sHH flow which can be expressed as

L (t) = JZ⊤(t)J(W0λ −H0)Z(t). (8.75)

Had P4 been taken as Π0, we would have precisely the standard QZ flow
described earlier and the convergence behaviour of the QZ flow is well un-
derstood. With the little flip at the (2, 2) block in P4, we maintain the sHH
structure and we can almost expect that a similar convergence behaviour
will occur. We conceive the following conjecture from our numerical obser-
vation. Its assertion is in agreement with the sHH Schur form characterized
in Benner et al. (2002). If the convergence can be proved, then we have a
very simple way to realize the canonical form.

Conjecture 8.7. Suppose L (0) is an sHH pencil to begin with. Then
the flow (8.75) with R defined by (8.71) maintains the sHH structure and
converges to the canonical form

L̃ =

[
W̃11 W̃12

0 W̃⊤
11

]
λ −

[
H̃11 H̃12

0 −H̃⊤
11

]
,

where W̃11 and H̃11 are upper quasi-triangular, W̃12 is skew-symmetric, and
H̃12 is symmetric, respectively.

We next consider the Hamiltonian pencils. It is easy to verify that Bλ−A
is Hamiltonian if and only if Q(Bλ−A)Z is Hamiltonian for arbitrary non-
singular Q and symplectic Z. In order to maintain the Hamiltonian pencil,
the R matrix in (8.66) must be Hamiltonian, but there is no restriction on
L in (8.65). The only concern is somehow to ensure nice convergence.
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For Hamiltonian pencils, both B−1A and A−1B are Hamiltonian matri-
ces, but AB−1 and BA−1 are not. Based on our past experience, we thus
propose to take R = P1(B

−1A), which is a compromise of Π0(B
−1A) with

the restriction (8.48) and makes Z orthogonal symplectic. There are no
restrictions on L, so we use the QZ flow as a guide. In all, we propose the
differential equation

dL

dt
= LP1(B

−1A) − Π0(AB−1)L , (8.76)

which differs from the QZ flow defined in (8.9) at the P1 operator but keeps
the pencil flow L (t) Hamiltonian for all t.

The limiting behaviour of (8.76) is somewhat more complicated to de-
scribe. For convenience, let Ξ denote the unit perdiagonal matrix whose
entries are all zero but 1’s along the north-east to south-west diagonal. We
introduce the notion that a matrix X is upper-left quasi-triangular if the
product XΞ is upper(-right) quasi-triangular in the usual sense. Again, the
following conjecture is observed in our numerical experiments, but we have
no proof for the moment.

Conjecture 8.8. Suppose the pencil B0λ−A0 is Hamiltonian. Then the
flow defined by (8.76) remains a Hamiltonian pencil. Furthermore, we have
the following.

(1) Suppose that B0λ − A0 has no purely imaginary eigenvalues. Then
L (t) converges to the canonical form

L̂ =

[
B̂11 B̂12

0 B̂22

]
λ −

[
Â11 Â12

0 Â22

]
,

where Â11 and B̂11 are upper quasi-triangular matrices with 1 × 1 or
2× 2 blocks at the same corresponding locations, and Â22 and B̂22 are
upper-left quasi-triangular matrices with 1 × 1 or 2 × 2 blocks at the
same corresponding locations.

(2) If B0λ − A0 has one pair of purely imaginary eigenvalues. Then L (t)
converges to the same canonical form as above, with the exception of
a non-zero entry at the (n + 1, n) position which is periodic in t.

Finally, we mention the following theorem concerning a general 2n × 2n
pencil (Benner, Mehrmann and Xu 1998).

Theorem 8.9. Given an arbitrary real 2n × 2n pencil B0λ − A0, there
exist an orthogonal matrix Q3 and orthogonal symplectic matrices Q1 and
Q2 such that

Q⊤
3 B0Q1 =

[
B̃11 B̃12

0 B̃⊤
22

]
, Q⊤

3 A0Q2 =

[
Ã11 Ã12

0 Ã⊤
22

]
, (8.77)
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where B̃ij , Ãij ∈ R
n×n,, B̃11, Ã11, B̃22 are upper triangular and A22 is upper

quasi-triangular.

Note that what is involved in Theorem 8.9 is a non-equivalence transfor-
mation, so generally it is not useful for eigenvalue preservation. However,
in the case when B0λ−A0 is Hamiltonian, then Q⊤

1 (B−1
0 A0)Q2 is precisely

the URV form for the Hamiltonian matrix B−1
0 A0. The reference to Q3 is

completely annihilated. The above result therefore has been exploited as
an effective way of eigenvalue computation for Hamiltonian pencils (Benner
et al. 1998).

We are curious as to whether the canonical form described in (8.77) can be
realized continuously. Defining H(t) = B−1(t)A(t), we have already learned
that the URV flow H(t) is governed by (8.61). In particular, we know that
Q1(t) and Q2(t) should be governed by

dQ1

dt
= Q1P1((HJH⊤J)1/2), (8.78)

dQ2

dt
= Q2P2((H

⊤JHJ)1/2), (8.79)

respectively. It is not immediately clear how the dynamics for Q3(t) should
be defined.

Consider the product

Z(t) := A(t)B−1(t) = Q⊤
3 A0Q2Q

⊤
1 B−1

0︸ ︷︷ ︸
Z

Q3 =

[
Z11 Z12

Z21 Z22

]
.

Note that Z (t) is not necessarily isospectral in t. However, the canonical
form (8.77) motivates us to hope that, as t tends to infinity, the matrix

Z (t) would ultimately exhibit the property that Z11 = Ã11B̃
−1
11 is upper

triangular, Z21 = 0 and Z22 = Ã⊤
22B̃

−⊤
22 should be lower quasi-triangular.

We suspect, therefore, that Q3(t) should be governed by the dynamical
system

dQ3

dt
= Q3P4(Z), (8.80)

where the operator P4 was defined earlier in (8.70). Assembling all to-
gether, we conjecture that the canonical form (8.77) can be realized via the
dynamical system

dA

dt
= AP2((A

⊤B−⊤JB−1AJ)1/2) − P4(AB−1)A, A(0) = A0, (8.81)

dB

dt
= BP1((B

−1AJA⊤B−⊤J)1/2) − P4(AB−1)A, B(0) = B0. (8.82)

If this conjecture is true, it would nicely express the complicated iterative
algorithm described in Benner et al. (1998) in a concise form.
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Table 8.2. Hierarchy of structure-preserving dynamical systems.

Initial structure Dynamical system Limiting behaviour Operator

X0 = staircase Ẋ = [X, Π0(X)] Ashlock et al. (1997) Π0(X) = X− − (X−)⊤

B0λ − A0 = staircase L̇ = L Π0(Y
−1X) − Π0(XY −1)L Conjecture 8.2

B0 = staircase Ḃ = BΠ0(B
⊤B) − Π0(BB⊤)B Conjecture 8.3

B0λ − A0 = Lancaster K̇ = 1

2
(CDK − KDC) + N⊤

L K + KNR D, NR, NL = controls

Ċ = (MDK − KDM) + N⊤

L C + CNR

Ṁ = 1

2
(MDC − CDM) + N⊤

L M + MNR

H0 = Hamiltonian Ḣ = [H,P0(H)] Chu and Norris (1988) P0(X) =

»
0 −X⊤

21

X21 0

–

W0 = skew-Hamiltonian Ẇ = [W,P0(W
1/2)]

H0 = Hamiltonian Ḣ = [H,P1(H)] Conjecture 8.5 P1(X) =

»
Π0(X11) −X21

X21 Π0(X11)

–

W0 = skew-Hamiltonian Ẇ = [W,P1(W
1/2)]

X0 = general Ẋ = XP3(X
⊤X) − P3(XX⊤)X Conjecture 8.6 P3 = generalized P0

H0 = Hamiltonian Ẋ = XP2((X
⊤JXJ)1/2) − P1((XJX⊤J)1/2)X URV flow P2(X) :=

»
−Π0(X

⊤

11
) X12

−X12 −Π0(X
⊤

11
)

–

W0λ − H0 = sHH L̇ = LP4(W
−1H) − P4(HW−1)L Conjecture 8.6 P4(X) :=

»
Π0(X11) −X⊤

21

X21 −Π0(X
⊤

22
)

–

B0λ − A0 = Hamiltonian L̇ = LP1(B
−1A) − Π0(AB−1)L Conjecture 8.8

B0λ − A0 = general Ȧ = AP2((A
⊤B−⊤JB−1AJ)1/2) − P4(AB−1)A not tested

Ḃ = BP1((B
−1AJA⊤B−⊤J)1/2) − P4(AB−1)A
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It might be helpful to summarize the different dynamical systems dis-
cussed thus far in Table 8.2. Recall that the principal consideration in
formulating these flows is to preserve the structure of the initial data. The
special operators in the right-hand column of the table are designed for
that purpose, all of which are variations of the operator Π0. Only a few of
these systems have their asymptotic behaviour understood in the literature.
Those identified by a conjecture in the table have been extensively tested
by numerical integrators, but no theory of asymptotic analysis is available
for the present. If any of the conjectures is true, then the corresponding
dynamical system often encapsulates a fairly complicated iterative process
into a nice and simple mathematical expression. Be aware that we are not
implying that the flows sampled at integer times will produce the same
iterates as those generated by existing discrete methods; this coincidence
might be too difficult to achieve for matrices with Hamiltonian structure.
The only cases we know for sure about this coincidence are the QR, QZ and
SVD flows. Nor are we inferring that these structure-preserving dynamical
systems can easily be discretized with the resulting iterative schemes still
preserving the original structure. We must stress that the link diagram in
Figure 1.1 that we frequently refer to in this paper now has an added di-
mension of constraint, namely, structure preservation. Thus there is much
room left for further investigation of these relationships.

8.5. Group structure

Needless to say, there are far too many other applications where it is desir-
able that a specific structure is maintained throughout a specified dynamical
system. Like the canonical forms, the notion of ‘structure’ should be inter-
preted quite liberally. We have discussed only a few cases involving the
spectrum, the singular values, the staircase, or the Hamiltonian structure
from the linear algebra perspective. Obviously, it is never an overstatement
that preserving volume, momentum, energy, symplecticity, or other kinds
of physical quantities, is an extremely important task with significant con-
sequences. The subject is simply so wide in scope that the author must
humbly admit it is beyond his comprehension. We conclude this chapter
by pointing out one more structure that has recently attracted tremendous
interest.

The once-abstract notion of Lie theory is now a ubiquitous framework in
many disciplines of sciences and engineering applications. In Section 7 we
have also demonstrated how group actions often serve as the fundamental
coordinate transformations leading to canonical forms. It should not come
as a surprise, but rather a necessity, that many of the dynamical systems
and numerical algorithms originally developed over Euclidean space need to
be redeveloped over manifolds. By studying the underlying geometry, for
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example, critical algorithms such as the Newton and the conjugate gradient
methods can be generalized to the Grassmann and the Stiefel manifolds in
a natural way (Edelman et al. 1999).

We illustrate in this section how the Newton dynamics can take place on
a Lie group (Owren and Welfert 2000). This notion typifies what we mean
by a dynamical system that respects the group structure.

Let G be a Lie group and g its corresponding Lie algebra. Keep in mind
that elements in G can be abstract functionals or operators. Suppose we
want to find ‘zero(s)’ of a given map,

f : G → g,

where the iterates are to stay on the manifold G. Given a current iterate
yn ∈ G, the Newton scheme can interpreted as solving the equation

dfyn(un) + f(yn) = 0, (8.83)

for a tangent vector un ∈ g and then updating to the next iterate via the
exponential map

yn+1 = yn exp(un). (8.84)

In the above, the differential

dfy : TyG → g

can be interpreted as

dfy(u) = (d/dt)t=0f(y exp(tu)). (8.85)

Alternatively, since all local charts of a Lie group can be obtained by trans-
lation, we can restrict ourselves to the local charts. In particular, it suffices
to consider the ‘local’ representation of f at yn,

f̃ := f ◦ Lyn ◦ exp, (8.86)

where Lz(y) = zy with a fixed z ∈ G. This becomes a classical algebraic
equation in Euclidean space. The Newton iteration involves the steps of
solving the equation

df̃vn(un) + f̃(vn) = 0, (8.87)

for un, where vn is the local parametrization, i.e., the logarithm of yn,
updating in the linear space by vn+1 = vn + un, and finally advancing to
the new iterate on the manifold G by defining

yn+1 = yn exp(vn+1). (8.88)

Note that both formulations reduce to the standard method in the Euclidean
case. It can be shown that under classical assumptions the proposed meth-
ods converge quadratically (Owren and Welfert 2000).
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We think this framework can be repeatedly applied to generalize other
types of algorithms originally designed for Euclidean space to Lie groups.
How far this generalization should go, and how practical such extensions
might be, are yet to be seen.
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S. �Lojasiewicz (1963), Une propriété topologique des sous-ensembles analytiques
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